2026届四川省武胜中学高一数学第一学期期末质量检测试题含解析_第1页
2026届四川省武胜中学高一数学第一学期期末质量检测试题含解析_第2页
2026届四川省武胜中学高一数学第一学期期末质量检测试题含解析_第3页
2026届四川省武胜中学高一数学第一学期期末质量检测试题含解析_第4页
2026届四川省武胜中学高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省武胜中学高一数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.2.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-23.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.84.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.5.已知函数的定义域为,则函数的定义域为()A. B.C. D.6.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约1050km,把南极附近的地球表面看作平面,则地球每自转πA.2200km B.C.1100km D.7.已知点是第三象限的点,则的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=9.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.110.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.函数,的图象恒过定点P,则P点的坐标是_____.13.已知,,且,若不等式恒成立,则实数m的取值范围为______14.在正方形ABCD中,E是线段CD的中点,若,则________.15.计算:________.16.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)18.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f19.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.20.考虑到高速公路行车安全需要,一般要求高速公路的车速(公里/小时)控制在范围内.已知汽车以公里/小时的速度在高速公路上匀速行驶时,每小时的油耗(所需要的汽油量)为升,其中为常数,不同型号汽车值不同,且满足.(1)若某型号汽车以120公里/小时的速度行驶时,每小时的油耗为升,欲使这种型号的汽车每小时的油耗不超过9升,求车速的取值范围;(2)求不同型号汽车行驶100千米的油耗的最小值.21.已知角的终边过点,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.2、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.3、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.4、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.5、B【解析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B6、C【解析】利用弧长公式求解.【详解】因为昆仑站距离地球南极点约1050km,地球每自转π所以由弧长公式得:l=1050×π故选:C7、D【解析】根据三角函数在各象限的符号即可求出【详解】因为点是第三象限的点,所以,故的终边位于第四象限故选:D8、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.9、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.10、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,根据三角函数的诱导公式进行转化求解即可.详解】,,则,故答案为:.12、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.13、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:14、【解析】详解】由图可知,,所以))所以,故,即,即得15、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题16、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元18、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x19、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2详解】设.因为,即,所以当时,即时,取得最小值,值为;当时,即时,取得最大值,值为.20、(1);(2)当时,该汽车行驶100千米的油耗的最小值为升;当时,该汽车行驶100千米的油耗的最小值为升.【解析】(1)根据题意,可知当时,求出的值,结合条件得出,再结合,即可得出车速的取值范围;(2)设该汽车行驶100千米的油耗为升,得出关于与的函数关系式,通过换元令,则,得出与的二次函数,再根据二次函数的图象和性质求出的最小值,即可得出不同型号汽车行驶100千米的油耗的最小值.【小问1详解】解:由题意可知,当时,,解得:,由,即,解得:,因为要求高速公路的车速(公里/小时)控制在范围内,即,所以,故汽车每小时的油耗不超过9升,求车速的取值范围.【小问2详解】解:设该汽车行驶100千米的油耗为升,则,令,则,所以,,可得对称轴为,由,可得,当时,即时,则当时,;当,即时,则当时,;综上所述,当时,该汽车行驶100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论