湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题含解析_第1页
湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题含解析_第2页
湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题含解析_第3页
湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题含解析_第4页
湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省浏阳一中、株洲二中等湘东六校2026届高二上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.2.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.3.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.4.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.5.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.6.若,,,则a,b,c与1的大小关系是()A. B.C. D.7.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.8.过点,且斜率为2的直线方程是A. B.C. D.9.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.10.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种11.《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“”.设分别是双曲线的左、右焦点,直线交双曲线左、右两支于两点,若恰好是的“勾”“股”,则此双曲线的离心率为()A. B.C.2 D.12.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线与直线相互平行,则实数___________.14.已知抛物线上一点到准线的距离为,到直线:的距离为,则的最小值为__________15.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数18.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.19.(12分)求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.20.(12分)已知圆,点,点是圆上任意一点,线段的垂直平分线交直线于点,点的轨迹记为曲线.(1)求曲线的方程;(2)已知曲线上一点,动圆,且点在圆外,过点作圆的两条切线分别交曲线于点,.(i)求证:直线的斜率为定值;(ii)若直线与交于点,且时,求直线的方程.21.(12分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.22.(10分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D2、A【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.3、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A4、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.5、B【解析】根据条件概率的计算公式,得所求概率为,故选B.6、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.7、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.8、A【解析】由直线点斜式计算出直线方程.【详解】因为直线过点,且斜率为2,所以该直线方程为,即.故选【点睛】本题考查了求直线方程,由题意已知点坐标和斜率,故选用点斜式即可求出答案,较为简单.9、C【解析】根据题先求出阅读过西游记人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题10、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.11、A【解析】根据双曲线的定义及直角三角形斜边的中线定理,再结合双曲线的离心率公式即可求解.【详解】如图所示由题意可知,根据双曲线的定义知,是的中点且.在中,是的中点,所以,因为直线的斜率为,所以,所以.所以是等边三角形,.在中,.由双曲线的定义,得,所以双曲线的离心率为.故选:A.12、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:14、3【解析】根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,利用点到直线的距离公式,即可求解.【详解】由题意,抛物线的焦点坐标为,准线方程为,如图所示,根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,由点到直线的距离公式可得,即的最小值为3.【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,以及抛物线的最值问题,其中解答中根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,利用点到直线的距离公式求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于中档试题.15、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.16、【解析】对函数求导,由导数的几何意义可得切线的斜率,求得切点,由直线的点斜式方程可得所求切线的方程【详解】函数的导数为∴,.曲线在点处的切线方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增函数;当时。,为减函数,所以在处取得极大值,也是最大值,最大值为,因为对任意正实数,恒成立,所以,得.【小问2详解】,,由,得,由,得或,所以在上为增函数,在上为减函数,在上为增函数,所以在时取得极大值为,在时取得极小值为,因为当大于0趋近于0时,趋近于负无穷,当趋近于正无穷时,趋近于正无穷,所以当,即时,有且只有一个零点;当,即时,有且只有两个零点;当,即时,有且只有三个零点;当,即时,有且只有两个零点;当,即时,有且只有一个零点.综上所述:当或时,有且只有一个零点;当或时,有且只有两个零点;当时有且只有三个零点.18、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上单调递减,在上单调递增.因为,所以在区间上的最大值,最小值为19、(1);(2).【解析】(1)利用双曲线定义求出双曲线的实轴长即可计算作答.(2)设出双曲线的方程,利用待定系数法求解作答.【小问1详解】因双曲线的焦点坐标为,且经过点,令双曲线实半轴长为a,则有,解得,双曲线半焦距,虚半轴长b有,所以所求双曲线的标准方程为.【小问2详解】依题意,设双曲线的方程为:,于是得,解得:,所以所求双曲线的标准方程为.20、(1)(2)(i)答案见解析(ii)或【解析】(1)通过几何关系可知,且,由此可知点的轨迹是以点、为焦点,且实轴长为的双曲线,通过双曲线的定义即可求解;(2)(i)设点,,直线的方程为,将直线方程与双曲线方程联立利用韦达定理及求出,即得到直线的斜率为定值;(ii)由(i)可知,由已知可得,联立方程即可求出,的值,代入即可求出的值,即可得到直线方程.【小问1详解】由题意可知,∵,且,∴根据双曲线的定义可知,点的轨迹是以点、为焦点,且实轴长为的双曲线,即,,,则点的轨迹方程为;【小问2详解】(i)设点,,直线的方程为,联立得,其中,且,,,∵曲线上一点,∴,由已知条件得直线和直线关于对称,则,即,整理得,,,,即,则或,当,直线方程为,此直线过定点,应舍去,故直线的斜率为定值.(ii)由(i)可知,由已知得,即,当时,,,即,,,解得或,但是当时,,故应舍去,当时,直线方程为,当时,,即,,,解得(舍去)或,当时,直线方程为,故直线的方程为或.21、(1);(2)或.【解析】(1)根据抛物线的定义进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式进行求解即可.【小问1详解】因为,所以P到直线的距离等于,所以抛物线C的准线为,所以,,所以抛物线C的标准方程为;【小问2详解】当直线l的斜率不存在时,方程为,此时直线l恰与抛物线C相切当直线l的斜率存在时,设其方程为,联立方程,得若,显然不合题意;若,则,解得此时直线l的方程为综上,直线l与抛物线C相切时,l的方程为或.22、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论