版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
磷原子掺杂氢氧化物的制备和氧析出性能研究摘要预催化剂的结构调整将不可避免地引发材料内部属性的改变,进而引起催化反应能垒及动力学改变。由于大多数预催化剂经过重构后活性有所提高,且重构物种提供了真实的催化位点和较高的催化活性,因此深化重构程度,开发完全重构的催化剂具有重要的价值。由于在电解水中OER过程存在较高的能量势垒且化学动力学过程缓慢,要求催化剂具有高效的催化反应活性。当前,工业电解水制氢中所使用的催化剂大多为贵金属OER催化剂(IrO2或RuO2),存在价格昂贵、资源稀缺等缺点,这对于氢能的大规模生产和应用是不利的。因此,研发既高效又稳定,且成本相对较低的非贵金属催化剂变得尤为关键。镍铁氢氧化物是最具发展潜力的碱性OER电催化剂,在掺杂杂原子后,催化剂在活性位点数量增加、电子结构优化以及吸附性能改善等因素综合作用下,能够有效提高水电解性能。本论文中制备了磷掺杂的镍铁基双氢氧化物电催化剂,并探索其在碱性条件下的OER催化性能。代表性样品NF/NiFeP-15在碱性电解液当中具有较好的稳定性和较低的Tafel斜率(49.8mVdec-1),说明其较快的OER反应动力学。关键词:重构现象、电解水、析氧反应、杂原子掺杂、镍铁氢氧化物
AbstractThereconstructionoftheprecatalystwillinevitablyleadtochangesintheintrinsicpropertiesofthematerial,resultinginchangesintheenergybarrierandkineticsofthecatalyticreaction.Duetotheimprovedactivityofmostprecatalystsafterreconstruction,andthefactthatthereconstructedspeciesproviderealcatalyticsitesandhighcatalyticactivity,itisofgreatvaluetodeepenthedegreeofreconstructionanddevelopfullyreconstructedcatalysts.DuetothehighenergybarrierandslowchemicalkineticsintheOERprocessofelectrolyzingwater,itisrequiredthatthecatalysthasefficientcatalyticreactionactivity.Currently,mostofthecatalystsusedinindustrialelectrolysisofwaterforhydrogenproductionarepreciousmetalOERcatalysts(IrO2orRuO2),whichhavedisadvantagessuchashighcostandscarceresources,whicharenotconducivetothelarge-scalepreparationanduseofhydrogenenergy.Therefore,developingefficient,stable,andcost-effectivenon-preciousmetalcatalystsisparticularlyimportant.NickelironhydroxideisthemostpromisingalkalineOERelectrocatalyst.Afterdopingwithheteroatoms,thecatalystcaneffectivelyimproveitswaterelectrolysisperformancebyincreasingthenumberofactivesites,optimizingitselectronicstructure,andimprovingitsadsorptionperformance.Inthispaper,phosphorusdopednickelirondoublehydroxideelectrocatalystswerepreparedandtheirOERcatalyticperformanceunderalkalineconditionswasexplored.TherepresentativesampleNF/NiFeP-15exhibitsgoodstabilityandalowTafelslope(49.8mVdec-1)inalkalineelectrolyte,indicatingitsfastOERreactionkinetics.Keywords:reconstructionphenomenon,electrolysisofwater,oxygenevolutionreaction,heteroatomdoping,nickelironhydroxide
目录1.绪论 51.1前言 51.2析氧反应(OER)机理 61.3金属基析氧催化剂研究进展简介 61.3.1金属氧化物/氢氧化物电催化剂 61.3.2硫化物/氮化物/磷化物电催化剂 82.本文研究的意义与主要内容 92.1研究内容 92.2实验仪器 92.3实验材料 102.4实验部分 102.5电化学测试 112.5.1循环伏安法(CV) 112.5.2线性扫描伏安法(LSV) 112.5.3电化学交流阻抗(EIS) 113.结果与讨论 124.结论 18参考文献 19
1.绪论1.1前言预催化剂重构必然会引起物质内在性质改变,进而引起催化反应能量势垒及动力学改变。所以研究重构产生的根源对认识重构化学非常关键。研究者们发现催化剂重构现象在OER、HER和CO2还原中普遍存在,从而推动了学者对催化重构的科学认识ADDINZOTERO_ITEMCSL_CITATION{"citationID":"DXUoew1x","properties":{"formattedCitation":"\\super1\\uc0\\u8211{}4\\nosupersub{}","plainCitation":"1–4","noteIndex":0},"citationItems":[{"id":556,"uris":["/users/10605487/items/PB7VYVDL"],"itemData":{"id":556,"type":"article-journal","abstract":"Abstract\nEvaluatingthedynamicstructuralreconstructionprocessesoftransitionmetal‐basedoxygenevolutionreaction(OER)catalystsatindustrialcurrentdensitiesinamembraneelectrodeassembly(MEA)configurationofananionexchangemembrane(AEM)electrolyzerisrequiredforthepracticalapplicationofOERelectrodesinAEM‐typenext‐generationelectrolyzers.ThisstudyunveilsthedeepreconstructionphenomenonofaMo‐containingOERcatalystanodeduringelectrolysisathighcurrentdensities.AcompletereconstructionofthecatalystduetoselectiveMo‐leachingisinevitableduringhighcurrentoperationandtherebynewcatalyticsurfacesoftheMo‐containingNi‐basedelectrodesforsustainablewaterelectrolysisareexposed.Thereconstructionwasconfirmedbyexsituandin situsurfacecharacterizationtechniques.Ascalablerouteforelectrodefabricationdemonstratedanditisshownthatthereconstructionmechanismofthecatalystleadstoamoresustainableoperationoftheelectrolyzerathighcurrentdensities.","container-title":"ChemCatChem","DOI":"10.1002/cctc.202301023","ISSN":"1867-3880,1867-3899","issue":"2","journalAbbreviation":"ChemCatChem","language":"en","page":"e202301023","source":"DOI.org(Crossref)","title":"DeepReconstructionofMo‐basedOERPre‐CatalystsinWaterElectrolysisatHighCurrentDensities","volume":"16","author":[{"family":"Antony","given":"RajiniP."},{"family":"Cechanaviciute","given":"IevaA."},{"family":"Quast","given":"Thomas"},{"family":"Zerdoumi","given":"Ridha"},{"family":"Saddeler","given":"Sascha"},{"family":"Junqueira","given":"JoãoR.C."},{"family":"Schuhmann","given":"Wolfgang"}],"issued":{"date-parts":[["2024",1,22]]}},"label":"page"},{"id":552,"uris":["/users/10605487/items/RBC8BHE6"],"itemData":{"id":552,"type":"article-journal","abstract":"Transitionmetalnitrides(TMNs)electrocatalystsexperiencerapidperformancedegradationduringoxygenevolutionreaction(OER)duetosevereandirreversibleelectrochemicalreconstruction,impedingtheirpracticalapplicationinelectrochemicalwatersplitting.Toaddressthisissue,ternarymetal(Ni,Fe,Cr)nitridenanoparticlesonspongynitrogen‐dopeddisorderedcarbonskeletonelectrocatalyst(NFCN/C)issynthesizedusinganovelone‐potpyrolysisofeutecticmixturemethod.Theionomer‐freeNFCN/Celectrode,whichundergoesmoderateelectrochemicalreconstruction,demonstrateshighOERperformanceinbothalkalinefreshwaterandseawatersolutions,achievingacurrentdensityof250 mA cm\n−2\nwithlowoverpotentialsof349and364 mV,respectively.TheNFCN/CanodewithPt/Ccathodedelivers10 mA cm\n−2\natalowcellvoltageof1.49 Vandexhibitslong‐termdurabilityof450 hat500 mA cm\n−2\n.In situRamanspectroscopyandultravioletphotoelectronspectroscopy(UPS),alongwithpre‐andpost‐characterizations,elucidatethatbothhighelectrocatalyticactivityandrobustnessofNFCN/CforOERstemfromtheproposedintrinsicstrategyintegratingphysicalandelectronicstructures.ThisworkpavesthewayfordesigninghighlyefficientandrobustTMNselectrocatalystswithmoderateelectrochemicalreconstructionforindustrialfreshwaterandseawaterelectrolysis.","container-title":"SmallStructures","DOI":"10.1002/sstr.202400031","ISSN":"2688-4062,2688-4062","issue":"8","journalAbbreviation":"SmallStructures","language":"en","license":"/licenses/by/4.0/","page":"2400031","source":"DOI.org(Crossref)","title":"ModeratelyReconstructedTernaryMetalNitrideNanoparticlesforHighlyEfficientandRobustFreshwaterandSeawaterOxidationunderIndustrialCurrentDensity","volume":"5","author":[{"family":"Wang","given":"Shihao"},{"family":"Pan","given":"Hongfei"},{"family":"Wang","given":"Yadong"},{"family":"Tang","given":"Haolin"},{"family":"Zhang","given":"Haining"}],"issued":{"date-parts":[["2024",8]]}},"label":"page"},{"id":551,"uris":["/users/10605487/items/HHP63A5I"],"itemData":{"id":551,"type":"article-journal","abstract":"Theinvestigationoftransitionmetalphosphides(TMPs)asefficientelectrocatalystsforwatersplittinghasgarneredsignificantattentioninacademicresearch.Nevertheless,limitedresearchhasbeenconductedonthealterationofthestructuralandmorphologicalpropertiesofTMPsresultingfromtheunavoidablesurfacereconstructionduringtheoxygenevolutionreaction(OER).Thisstudyintroducesanewlydevelopedcatalyst,namelynickel–cobaltphosphidenanowires(NiCoP),whichfacilitatesthein-situgrowthofnickel–cobaltoxide(NiCo2O4)throughsurfacereconstructionduringanodicpotentialcyclinginalkalineelectrolytes.Thecatalyst’sextensivemodificationcanbeobservedthroughex-situcharacterizationtechniques.Thecatalystundergoesasignificanttransformationthatultimatelyyieldsaphosphidescaffold,leadingtotheformationofaspineloxidesurface.ThistransformationenhancesthecatalyticenvironmentfortheOER,makingithighlyefficientandpotent.ThetransformedcatalystdemonstratescomparablecatalyticperformancetothepreciousRuO2catalystacrossvariouscurrentdensities.Importantly,itexhibitsremarkablelong-termstability,asdemonstratedbyitsabilitytosustaincontinuousoperationfor72hatacurrentdensityof50mAwhilemaintainingstablecatalyticperformance.","container-title":"JournalofElectroanalyticalChemistry","DOI":"10.1016/j.jelechem.2023.117928","ISSN":"15726657","journalAbbreviation":"JournalofElectroanalyticalChemistry","language":"en","page":"117928","source":"DOI.org(Crossref)","title":"Nickel-cobaltphosphidenanowiresasprecatalystsforsurfacereconstructiontopreparedurableandefficientOERcatalysts","volume":"952","author":[{"family":"Cao","given":"Qingbin"},{"family":"Su","given":"Wenxiao"},{"family":"Liu","given":"Haorui"},{"family":"Feng","given":"Chenchen"},{"family":"Zhou","given":"Qi"}],"issued":{"date-parts":[["2024",1]]}},"label":"page"},{"id":555,"uris":["/users/10605487/items/N5UEZJ7N"],"itemData":{"id":555,"type":"article-journal","abstract":"Iron(Fe)promotesthesurfacereconstructionofNiPS\n3\nevenatlowerpotentialfortheNi\n\nx\n\nFe\n\n1−\nx\n\nPS\n3\nOERelectrocatalyst.ThesurfacereconstructedamorphouslayerscanefficientlyactasrealcatalyticactivesitesfortheOER.\n\n,\n\nSurfaceself-reconstructionofoxygenevolutionreaction(OER)electrocatalystsgenerallyoccursduringtheelectrochemicalactivationprocess.Herein,westudythesurfaceself-reconstructionofa2DlayeredFe-dopedNi-thiophosphate(Ni\n\nx\n\nFe\n\n1−\nx\n\nPS\n3\n)nanosheet.TheroleofFeinthesurfaceself-reconstructionofNiPS\n3\nduringtheOERisinvestigatedbyusingan\ninsitu\nRamananalysis.Formationofamorphousmetal/non-metaloxidelayersonthesurfaceofNi\n\nx\n\nFe\n\n1−\nx\n\nPS\n3\ncanefficientlyactastheultimatecatalyticcenterfortheOER.","container-title":"ChemicalCommunications","DOI":"10.1039/D3CC01510F","ISSN":"1359-7345,1364-548X","issue":"60","journalAbbreviation":"Chem.Commun.","language":"en","page":"9247-9250","source":"DOI.org(Crossref)","title":"Unravelingthesurfaceself-reconstructionofFe-dopedNi-thiophosphateforefficientoxygenevolutionreaction","volume":"59","author":[{"family":"Kirubasankar","given":"Balakrishnan"},{"family":"Won","given":"YoSeob"},{"family":"Choi","given":"SooHo"},{"family":"Kim","given":"JaeWoo"},{"family":"Adofo","given":"LaudAnim"},{"family":"Kim","given":"SooMin"},{"family":"Kim","given":"KiKang"}],"issued":{"date-parts":[["2023"]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}1–4。大因素可引起预催化剂重构,一是催化过程电压变化,二是测试条件变化ADDINZOTERO_ITEMCSL_CITATION{"citationID":"i45wfktX","properties":{"formattedCitation":"\\super5\\nosupersub{}","plainCitation":"5","noteIndex":0},"citationItems":[{"id":542,"uris":["/users/10605487/items/WZJ8QHXF"],"itemData":{"id":542,"type":"article-journal","abstract":"Abstract\nReconstructioninducedbyexternalenvironment(suchasappliedvoltagebiasandtestelectrolytes)changescatalystcomponentandcatalyticbehaviors.Investigationsofcompletereconstructioninenergyconversionrecentlyreceiveintensiveattention,whichpromotethetargeteddesignoftop‐performancematerialswithmaximumcomponentutilizationandgoodstability.However,theadvantagesofcompletereconstruction,itsdesignstrategies,andextensiveapplicationshavenotachievedtheprofoundunderstandingsandsummariesitdeserves.Here,thisreviewsystematicallysummarizesseveralimportantadvancesincompletereconstructionforthefirsttime,whichincludes1)fundamentalunderstandingsofcompletereconstruction,thecharacteristicsandadvantagesofcompletelyreconstructedcatalysts,andtheirdesignprinciples,2)typesofreconstruction‐involvedprecatalystsforoxygenevolutionreactioncatalysisinwidepHsolution,andoriginsoflimitedreconstructiondegreeaswellasdesignstrategies/principlestowardcompletereconstruction,3)completereconstructionfornovelmaterialsynthesisandotherelectrocatalysisfields,and4)advancedinsitu/operandoormultiangle/levelcharacterizationtechniquestocapturethedynamicreconstructionprocessesandrealcatalyticcontributors.Finally,theexistingmajorchallengesandunexplored/unsolvedissuesonstudyingthereconstructionchemistryaresummarized,andanoutlookforthefurtherdevelopmentofcompletereconstructionisbrieflyproposed.Thisreviewwillarousetheattentiononcompletereconstructionmaterialsandtheirapplicationsindiversefields.","container-title":"AdvancedMaterials","DOI":"10.1002/adma.202007344","ISSN":"0935-9648,1521-4095","issue":"32","journalAbbreviation":"AdvancedMaterials","language":"en","page":"2007344","source":"DOI.org(Crossref)","title":"ComprehensiveUnderstandingsintoCompleteReconstructionofPrecatalysts:Synthesis,Applications,andCharacterizations","title-short":"ComprehensiveUnderstandingsintoCompleteReconstructionofPrecatalysts","volume":"33","author":[{"family":"Liu","given":"Xiong"},{"family":"Meng","given":"Jiashen"},{"family":"Zhu","given":"Jiexin"},{"family":"Huang","given":"Meng"},{"family":"Wen","given":"Bo"},{"family":"Guo","given":"Ruiting"},{"family":"Mai","given":"Liqiang"}],"issued":{"date-parts":[["2021",8]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}5。这里我们主要研究电压的改变,通过CV测量实现电化学活化和重建。催化剂经过活化后进行表面重构,表面不可避免地会形成含氧中间体。在原始催化剂的表面上原位生成无定形或者低结晶活性的催化物种通常被用作真实催化物质所对应的氧化物或者氢氧化物ADDINZOTERO_ITEMCSL_CITATION{"citationID":"X4g8WmX8","properties":{"formattedCitation":"\\super6\\nosupersub{}","plainCitation":"6","noteIndex":0},"citationItems":[{"id":562,"uris":["/users/10605487/items/TWVP9DFP"],"itemData":{"id":562,"type":"article-journal","abstract":"NiFe(oxy)hydroxide(NiFeOOH)isrecognizedasahighlyactivenon-preciousmetalcatalystinalkalinewaterelectrolysisduetoitsexceptionalcatalyticproperties.Inthiswork,highvalencemolybdenum(Mo)isintroducedtoimprovetheelectronicstructureandenhancetheelectricalconductivityofNiFeOOHforoxygenevolutionreaction(OER).TheintroductionofMoresultsinaMo-dopedNiFeOOHcatalystwithasignificantlyreducedoverpotentialof205mVat10mA/cm2andaTafelslopeof31.7mV/dec,enablingstableoperationforupto170h.Bothempiricalexperimentandtheorysimulationsareemployedtogaininsightintothe3d-electroninteractionsbetweenmolybdenumandnickel(Ni),iron(Fe)inMo-dopedNiFeOOH.TheresultsindicatethatMo-dopingenhancesthevalencestatesofNiandFe,leadingtoashiftinthed-bandcenterofthebimetallicactivesites.ThismodificationaffectsthetransformationofMo-dopedNiFeOOHintotheγ-NiFeOOHactivephase.ThispotentcombinationlendscredencetoitspotentialsuitabilityandutilityinOERapplications.","container-title":"FrontiersinEnergy","DOI":"10.1007/s11708-024-0960-6","ISSN":"2095-1701,2095-1698","issue":"6","journalAbbreviation":"Front.Energy","language":"en","page":"850-862","source":"DOI.org(Crossref)","title":"ImpactofbimetallicsynergiesonMo-dopingNiFeOOH:InsightsintoenhancedOERactivityandreconstructedelectronicstructure","title-short":"ImpactofbimetallicsynergiesonMo-dopingNiFeOOH","volume":"18","author":[{"family":"Qu","given":"Jingkuo"},{"family":"Dong","given":"Yuchen"},{"family":"Zhang","given":"Tuo"},{"family":"Zhao","given":"Chang"},{"family":"Wei","given":"Liting"},{"family":"Guan","given":"Xiangjiu"}],"issued":{"date-parts":[["2024",12]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}6。重构后所得催化剂催化性能有所改变,例如反应中活性位点和催化位点数目。在实际应用中,重建物种是否稳定同样可以带动重建进行并对结果产生影响。在热力学稳定性方面,对应氧化物,氢氧化物或者氢氧化物在氧化条件下以最为稳定。因活性物种生成较多而重构程度较深的催化剂一般会呈现强化催化性能目前,在工业电解水制氢的过程中,主要使用的催化剂是贵金属OER催化剂(如IrO2或RuO2),这种催化剂存在着价格高昂和资源有限的问题,这对氢能的大规模生产和应用构成了障碍ADDINZOTERO_ITEMCSL_CITATION{"citationID":"jZ8hDmB3","properties":{"formattedCitation":"\\super7,8\\nosupersub{}","plainCitation":"7,8","noteIndex":0},"citationItems":[{"id":570,"uris":["/users/10605487/items/CY98KJSG"],"itemData":{"id":570,"type":"article-journal","abstract":"Intheprocessofoxygenevolutionreaction(OER)onperovskite,itisofgreatsignificancetoacceleratethehinderedlatticeoxygenoxidationprocesstopromotetheslowkineticsofwateroxidation.Inthispaper,afacilesurfacemodificationstrategyofnanometer-scaleironoxyhydroxide(FeOOH)clustersdepositingonthesurfaceofLaNiO\n3\n(LNO)perovskiteisreported,anditcanobviouslypromotehydroxyladsorptionandweakenNi-ObondofLNO.TheaboverelevantevidencesarewelldemonstratedbytheexperimentalresultsandDFTcalculations.TheexcellenthydroxyladsorptionabilityofFeOOH-LaNiO\n3\n(Fe-LNO)canobviouslyoptimizeOH\n-\nfillingbarrierstopromotelatticeoxygen-participatedOER(LOER),andtheweakenedNi-ObondofLNOperovskitecanobviouslyreducethereactionbarrierofthelatticeoxygenparticipationmechanism(LOM).Basedontheabovesynergisticcatalysiseffect,theFe-LNOcatalystexhibitsamaximumfactorof5catalyticactivityincreasesforOERrelativetothepristineperovskiteanddemonstratesthefastreactionkinetics(lowTafelslopeof42 mV dec\n-1\n)andsuperiorintrinsicactivity(TOFsof~40O\n2\nS\n-1\nat1.60 Vvs.RHE).","container-title":"Research","DOI":"10.34133/2020/6961578","ISSN":"2639-5274","journalAbbreviation":"Research","language":"en","license":"/licenses/by/4.0/","page":"2020/6961578","source":"DOI.org(Crossref)","title":"BoostingLatticeOxygenOxidationofPerovskitetoEfficientlyCatalyzeOxygenEvolutionReactionbyFeOOHDecoration","volume":"2020","author":[{"family":"Zhao","given":"Jia-Wei"},{"family":"Li","given":"Cheng-Fei"},{"family":"Shi","given":"Zi-Xiao"},{"family":"Guan","given":"Jie-Lun"},{"family":"Li","given":"Gao-Ren"}],"issued":{"date-parts":[["2020",1]]}},"label":"page"},{"id":568,"uris":["/users/10605487/items/365A2RAN"],"itemData":{"id":568,"type":"article-journal","abstract":"Oxygenreductionreaction(ORR)andoxygenevolutioncreaction(OER)areimportantchemicalreactionsforarechargeablelithium–oxygenbattery(LOB).Recently,high-entropyalloysandoxideshaveattractedmuchattentionbecausetheyshowedgoodelectrocatalyticperformanceforoxygenevolutionreaction(OER)and/oroxygenreductionreaction(ORR).Inthisstudy,weaimedtosynthesizeandcharacterizeCoSn(OH)6andtwotypesofhigh-entropyperovskitehydroxides,thatis,(Co0.2Cu0.2Fe0.2Mn0.2Mg0.2)Sn(OH)6(CCFMMSOH)and(Co0.2Cu0.2Fe0.2Mn0.2Ni0.2)Sn(OH)6(CCFMNSOH).TEMobservationandXRDmeasurementsrevealedthatthehigh-entropyhydroxidesCCFMMSOHandCCFMNSOHhadcubiccrystalswithsidesofapproximately150–200nmandcrystalstructuressimilartothoseofperovskite-typeCSOH.LSVmeasurementresultsshowedthatthehigh-entropyhydroxidesCCFMMSOHandCCFMNSOHshowedbifunctionalcatalyticfunctionsfortheORRandOER.CCFMNSOHshowedbettercatalyticperformancethanCCFMMSOH.","container-title":"Materials","DOI":"10.3390/ma17122963","ISSN":"1996-1944","issue":"12","journalAbbreviation":"Materials","language":"en","license":"/licenses/by/4.0/","page":"2963","source":"DOI.org(Crossref)","title":"SynthesisofHigh-EntropyPerovskiteHydroxidesasBifunctionalElectrocatalystsforOxygenEvolutionReactionandOxygenReductionReaction","volume":"17","author":[{"family":"Chae","given":"Sangwoo"},{"family":"Shio","given":"Akihito"},{"family":"Kishida","given":"Tomoya"},{"family":"Furutono","given":"Kosuke"},{"family":"Kojima","given":"Yumi"},{"family":"Panomsuwan","given":"Gasidit"},{"family":"Ishizaki","given":"Takahiro"}],"issued":{"date-parts":[["2024",6,17]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}7,8。因此,研发既高效又稳定,且成本相对较低的非贵金属催化剂变得尤为关键。镍铁氢氧化物是最具发展潜力的碱性OER电催化剂,然而由于原始镍铁氢氧化物的高活化能垒和有序电子构型,导致其电化学重构过程缓慢,重构产物数量有限且本征活性较低ADDINZOTERO_ITEMCSL_CITATION{"citationID":"ZjI8rDJp","properties":{"formattedCitation":"\\super9,10\\nosupersub{}","plainCitation":"9,10","noteIndex":0},"citationItems":[{"id":548,"uris":["/users/10605487/items/YA9ABSGG"],"itemData":{"id":548,"type":"article-journal","abstract":"NiFe-layereddoublehydroxides(NiFe-LDHs),aspromisingelectrocatalysts,havereceivedsignificantresearchattentionforhydrogenandoxygengenerationthroughwatersplitting.However,theslowoxidationkineticsofNiFe-LDH,duetothelimitednumberofactivesitesandthelowconductivity,hinderstheimprovementofthewater-splittingefficiency.Therefore,toovercometheobstacles,two-dimensional(2D)SnSwasfirstexploredtotailorthepreparedNiFe-LDHviathehydrothermalmethod.ANiFe-LDH/SnSheterojunctionisbuilt,whichisobservedfromthemicrostructuralinvestigations.SnSincorporationcouldgreatlyimprovetheconductivityoftheNiFe-LDHsheets,whichwasreflectedbythereducedchargetransferresistance.Moreover,SnSlayersmodulatedtheelectronicenvironmentaroundtheactivesites,favoringtheadsorptionofintermediatesduringtheoxygenevolutionreaction(OER)process,whichwasverifiedbydensityfunctionaltheorycalculations.AsynergisticeffectinducedbytheNiFe-LDH/SnSheterostructurepromotedtheOERactivitiesinelectrical,electronic,andenergeticaspects.Consequently,theas-preparedNiFe-LDH/SnSelectrocatalystgreatlyimprovedtheelectrocatalyticperformance,exhibiting20%and27%reductionsintheoverpotentialandTafelslopecomparedwiththoseofpristineNiFe-LDH,respectively.TheresultsprovideastrategyforregulatingNiFe-basedelectrocatalystsbyusingemerging2Dmaterialstoenhancewater-splittingefficiency.","container-title":"ACSAppliedMaterials&Interfaces","DOI":"10.1021/acsami.3c18458","ISSN":"1944-8244,1944-8252","issue":"18","journalAbbreviation":"ACSAppl.Mater.Interfaces","language":"en","license":"/licenses/by-nc-nd/4.0/","page":"23054-23060","source":"DOI.org(Crossref)","title":"Two-DimensionalSnSMediatesNiFe-LDH-LayeredElectrocatalysttowardBoostingOERActivityforWaterSplitting","volume":"16","author":[{"family":"Sun","given":"Yaxun"},{"family":"Cai","given":"Qingguo"},{"family":"Wang","given":"Ze"},{"family":"Li","given":"Zhichun"},{"family":"Zhou","given":"Qianyu"},{"family":"Li","given":"Xin"},{"family":"Zhao","given":"Dongye"},{"family":"Lu","given":"Jianfeng"},{"family":"Tian","given":"Shouqin"},{"family":"Li","given":"Yong"},{"family":"Wang","given":"Shifeng"}],"issued":{"date-parts":[["2024",5,8]]}},"label":"page"},{"id":546,"uris":["/users/10605487/items/WXS5F9M9"],"itemData":{"id":546,"type":"article-journal","abstract":"Theoxygenevolutionreaction(OER),whichinvolvesafour-electrontransferandslowkinetics,requiresanefficientcatalysttoovercomethehighenergybarrierforhigh-performancewaterelectrolysis.Inthispaper,anovelNi3S2@V-NiFe(III)LDH/NFcatalystwaspreparedviaafaciletwo-stephydrothermalmethod.TheconstructedheterostructureofNi3S2@V-NiFe(III)LDHincreasesthespecificsurfaceareaandregulatestheelectronicstructure.Furthermore,theintroductionoftheVelementformsanelectrontransportchainofNi-O-Fe-O-V-O-Ni,whichoptimizesthebindingenergybetweenmetalactivesitesandoxygenevolutionreactionintermediates,accelerateselectrontransfer,andimprovesself-reconstruction.Withthisdualregulationstrategy,Ni3S2@V-NiFe(III)LDH/NFexhibitsexceptionalOERperformancewithanoverpotentialof280mVat100mA/cm2andaTafelslopeof45.4mV/dec.Thisworkdevelopsadualregulationstrategycombiningheterostructureformationandthedopingeffect,whicharebeneficialinthedesignofefficientOERcatalysts.","container-title":"Molecules","DOI":"10.3390/molecules29246018","ISSN":"1420-3049","issue":"24","journalAbbreviation":"Molecules","language":"en","license":"/licenses/by/4.0/","page":"6018","source":"DOI.org(Crossref)","title":"ConstructionofHeterostructuredNi3S2@V-NiFe(III)LDHforEnhancedOERPerformance","volume":"29","author":[{"family":"Dong","given":"Qianqian"},{"family":"Zhong","given":"Qijun"},{"family":"Zhou","given":"Jie"},{"family":"Li","given":"Yuhao"},{"family":"Wang","given":"Yujing"},{"family":"Cai","given":"Jiayang"},{"family":"Yu","given":"Shuangwei"},{"family":"He","given":"Xiong"},{"family":"Zhang","given":"Shaohui"}],"issued":{"date-parts":[["2024",12,20]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}9,10。因此,降低启动重构的活化能势垒和提高重构产物的本征活性是增强镍铁氢氧化物电催化性能的关键。掺杂杂原子被视为一种简便且高效的方式来增强催化效果ADDINZOTERO_ITEMCSL_CITATION{"citationID":"HXhjR4Jr","properties":{"formattedCitation":"\\super11,12\\nosupersub{}","plainCitation":"11,12","noteIndex":0},"citationItems":[{"id":566,"uris":["/users/10605487/items/F5PUI9SA"],"itemData":{"id":566,"type":"article-journal","abstract":"Nickel-ironlayereddoublehydroxides(NiFe-LDH)withtunablecatalyticpropertieshaveshownpromiseasanoutstandingalternativetorutheniumiridiumoxidefortheoxygenevolutionreaction(OER).However,theintrinsicactivityofsuchelectrocatalystsissuboptimal,andaconsiderablegapremainsinunderstandingtheworkingmechanism.Toaddressthisissue,weemployaconvenientcorrosionmethodtosynthesizeMo-modifiednickel–ironhydroxide(Mo-NiFeOxHy)ultrathinnanosheets.Mo-NiFeOxHydemonstratesexcellentOERactivity,requiringonly216mVatacurrentdensityof10mAcm−2,withenhancedstability.TheoreticalcalculationsrevealthattheModopinginducesmaterialdistortion,shiftingthed-bandcenterclosertotheFermilevel,whichacceleratesthekineticrateandcatalyticactivity.InsituRamanexperimentsshowthatdopingwithMopromotestherapidformationofhigh-oxidation-statetransitionmetalhydroxidespecies,furtherenhancingthecatalyticpropert
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鄂尔多斯2025年内蒙古鄂尔多斯市杭锦旗事业单位引进12名专业技术人员笔试历年参考题库附带答案详解
- 菏泽2025年山东菏泽定陶区区直事业单位引进高层次急需紧缺人才30人笔试历年参考题库附带答案详解
- 株洲2025年湖南株洲市攸县选调城区学校教师121人笔试历年参考题库附带答案详解
- 山东山东中医药大学附属医院招聘高级岗位博士研究生工作人员10人笔试历年参考题库附带答案详解
- 天津2025年天津市第五中心医院生态城医院医疗人才招聘29人笔试历年参考题库附带答案详解
- 台州浙江台州市立医院招聘药剂科工作人员笔试历年参考题库附带答案详解
- 职业性肌肉骨骼疾病预警模型
- 东莞2025年广东东莞市樟木头镇实验小学招聘第二批编外教师12人笔试历年参考题库附带答案详解
- 2026年市场营销策略考试模拟卷
- 职业性眼病流行病学数据的统计分析方法
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及参考答案详解1套
- 思政教师培训心得课件
- 广东省东莞市2024-2025学年高一上学期1月期末英语试题【含答案解析】
- QC080000体系文件手册
- GB/T 44233.2-2024蓄电池和蓄电池组安装的安全要求第2部分:固定型电池
- DL∕T 612-2017 电力行业锅炉压力容器安全监督规程
- 2024年国企行测题库
- 烟囱技术在血管腔内修复术中的应用
- 岗位聘用登记表
- 2023年高铁信号车间副主任述职报告
- 第3章 圆锥曲线的方程【精简思维导图梳理】高考数学高效备考 人教A版2019选择性必修第一册
评论
0/150
提交评论