2026届茂名市重点中学数学高二上期末学业质量监测模拟试题含解析_第1页
2026届茂名市重点中学数学高二上期末学业质量监测模拟试题含解析_第2页
2026届茂名市重点中学数学高二上期末学业质量监测模拟试题含解析_第3页
2026届茂名市重点中学数学高二上期末学业质量监测模拟试题含解析_第4页
2026届茂名市重点中学数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届茂名市重点中学数学高二上期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.2.抛物线的焦点到准线的距离为()A. B.C. D.3.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.4.已知双曲线的离心率,点是抛物线上的一动点,到双曲线的上焦点的距离与到直线的距离之和的最小值为,则该双曲线的方程为A. B.C. D.5.若直线:与直线:平行,则a的值是()A.1 B.C.或6 D.或76.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.7.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.8.数列满足,对任意,都有,则()A. B.C. D.9.已知是抛物线:的焦点,直线与抛物线相交于,两点,满足,记线段的中点到抛物线的准线的距离为,则的最大值为()A. B.C. D.10.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.11.命题“,”的否定为()A., B.,C., D.,12.内角A,B,C的对边分别为a,b,c.若,则一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.14.在平面直角坐标系xOy中,AB是圆O:x2+y2=1的直径,且点A在第一象限;圆O1:(x﹣a)2+y2=r2(a>0)与圆O外离,线段AO1与圆O1交于点M,线段BM与圆O交于点N,且,则a的取值范围为_______.15.已知等比数列满足:,,,则公比______.16.函数在处的切线方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知空间内不重合的四点A,B,C,D的坐标分别为,,,,且(1)求k,t的值;(2)求点B到直线CD的距离18.(12分)如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;19.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角20.(12分)如图,在直三棱柱中,,是中点.(1)求点到平面的的距离;(2)求平面与平面夹角的余弦值;21.(12分)已知等差数列满足,.(1)求数列的通项公式;(2)设,求数列的前n项和.22.(10分)在△ABC中,角A,B,C的对边分别是,已知(1)求角B的大小;(2)求三角形ABC的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C2、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.3、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B4、B【解析】先根据离心率得,再根据抛物线定义得最小值为(为抛物线焦点),解得,即得结果.【详解】因为双曲线的离心率,所以,设为抛物线焦点,则,抛物线准线方程为,因此到双曲线的上焦点的距离与到直线的距离之和等于,因为,所以,即,即双曲线的方程为,选B.【点睛】本题考查双曲线方程、离心率以及抛物线定义,考查基本分析求解能力,属中档题.5、D【解析】根据直线平行的充要条件即可求出【详解】依题意可知,显然,所以由可得,,解得或7故选:D6、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.7、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D8、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.9、C【解析】设,过点,分别作抛物线的准线的垂线,垂足分别为,进而得,再结合余弦定理得,进而根据基本不等式求解得.【详解】解:设,过点,分别作抛物线的准线的垂线,垂足分别为,则,因为点为线段中点,所以根据梯形中位线定理得点到抛物线的准线的距离为,因为,所以在中,由余弦定理得,所以,又因为,所以,当且仅当时等号成立,所以,故.所以的最大值为.故选:C【点睛】本题考查抛物线的定义,直线与抛物线的位置关系,余弦定理,基本不等式,考查运算求解能力,是中档题.本题解题的关键在于根据题意,设,进而结合抛物线的定于与余弦定理得,,再求最值.10、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D11、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A12、C【解析】利用余弦定理角化边整理可得.【详解】由余弦定理有,整理得,故一定是直角三角形.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.14、【解析】根据判断出四边形为平行四边形,由此求得圆的方程以及的长,进而判断出点在圆上,根据圆与圆的位置关系,求得的取值范围.【详解】四边形ONO1M为平行四边形,即ON=MO1=r=1,所以圆的方程为,且ON为△ABM的中位线AM=2ON=2AO1=3,故点A在以O1为圆心,3为半径的圆上,该圆的方程为:,故与x2+y2=1在第一象限有交点,即2<a<4,由,解得,故a的取值范围为(,4).故答案为:【点睛】本小题主要考查圆与圆的位置关系,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于难题.15、【解析】根据等比数列的通项公式可得,结合即可求出公比.【详解】设等比数列的公式为q,则,即,解得,又,所以,所以.故答案为:.16、【解析】求得函数的导数,得到且,结合直线的点斜式方程,即可求解.【详解】由题意,函数,可得,则且,所以函数在处的切线方程为,即,即切线方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)由,可得存在唯一实数,使得,列出方程组,解之即可得解;(2)设直线与所成的角为,求出,再根据点B到直线CD的距离为即可得解【小问1详解】解:,,因为,所以存在唯一实数,使得,所以,所以,解得,所以,;【小问2详解】解:,则,设直线与所成的角为,则,所以点B到直线CD的距离为.18、(1)证明见解析(2)【解析】(1)通过证明和可得答案;(2)连接,则为直线与平面所成角的平面角,在直角三角形中计算即可.【小问1详解】棱柱为直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小问2详解】连接,面,则为直线与平面所成角的平面角在直角三角形中,则,,所以直线与平面所成角的大小为.19、(1)证明见解析(2)(3)【解析】(1)连接,交于O,连接OD,根据中位线的性质,可证,根据线面平行的判定定理,即可得证;(2)如图建系,求得各点坐标,进而可求得平面与平面法向量,根据二面角的向量求法,即可得答案;(3)求得坐标,根据线线角的向量求法,即可得答案.【小问1详解】连接,交于O,连接OD,则O为的中点,在中,因为O、D分别为、BC中点,所以,又因为平面,平面,所以平面【小问2详解】由题意得,两两垂直,以B为原点,为x,y,z轴正方向建系,如图所示:设,则,所以,则,,因为平面在平面ABC内,且平面ABC,所以即为平面的一个法向量,设平面的一个法向量为,则,所以,令,则,所以法向量,所以,由图象可得平面与平面的夹角为锐角,所以平面与平面的夹角的余弦值为【小问3详解】由(2)可得,设与所成的角为,则,解得,所以与所成的角为20、(1)(2)【解析】(1)以为原点,为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量为,再利用公式计算即可;(2)易得平面的法向量为,设平面与平面的夹角为,再利用计算即可小问1详解】解:(1)以为原点,为轴,为轴,为轴建立空间直角坐标系所以因为,设平面的法向量为,则有,得,令则,所以可以取,设点到平面的距离为,则,所以点到平面的的距离的距离为;【小问2详解】(2)因为平面,取平面的法向量为设平面与平面的夹角为,所以平面与平面夹角的余弦值21、(1);(2).【解析】(1)将条件化为基本量并解出,进而求得答案;(2)通过裂项法即可求出答案.【小问1详解】由,.得:解得:故.【小问2详解】当时,.所以时,.22、(1)B=300(2)【解析】分析:(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论