福建省泉州市南安第一中学2026届高一下数学期末经典试题含解析_第1页
福建省泉州市南安第一中学2026届高一下数学期末经典试题含解析_第2页
福建省泉州市南安第一中学2026届高一下数学期末经典试题含解析_第3页
福建省泉州市南安第一中学2026届高一下数学期末经典试题含解析_第4页
福建省泉州市南安第一中学2026届高一下数学期末经典试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市南安第一中学2026届高一下数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,若公差,则()A. B. C. D.2.已知数列的前项和为,且,,则()A.200 B.210 C.400 D.4103.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.164.已知点,则向量()A. B. C. D.5.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.46.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.7.中,下列结论:①若,则,②,③,④若是锐角三角形,则,其中正确的个数是()A.1 B.2 C.3 D.48.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.69.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.10.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球二、填空题:本大题共6小题,每小题5分,共30分。11.若把写成的形式,则______.12.若三棱锥的底面是以为斜边的等腰直角三角形,,,则该三棱锥的外接球的表面积为________.13.在空间直角坐标系中,点关于原点的对称点的坐标为______.14.有一个底面半径为2,高为2的圆柱,点,分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点或的距离不大于1的概率是________.15.函数的定义域是_____.16.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D118.在边长为2的菱形中,,为的中点.(1)用和表示;(2)求的值.19.在等比数列中,.(1)求的通项公式;(2)若,求数列的前项和.20.在中,已知内角所对的边分别为,已知,,的面积.(1)求边的长;(2)求的外接圆的半径.21.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据等差数列的通项公式求解即可得到结果.【详解】∵等差数列中,,公差,∴.故选B.【点睛】等差数列中的计算问题都可转为基本量(首项和公差)来处理,运用公式时要注意项和项数的对应关系.本题也可求出等差数列的通项公式后再求出的值,属于简单题.2、B【解析】

首先利用递推关系式求出数列的通项公式,进一步利用等差数列的前项和公式的应用求出结果.【详解】由题,,又因为所以当时,可解的当时,,与相减得当为奇数时,数列是以为首相,为公差的等差数列,当为偶数时,数列是以为首相,为公差的等差数列,所以当为正整数时,,则故选B.【点睛】本题考查的知识点有数列通项公式的求法及应用,等差数列的前项和公式的应用,主要考查学生的运算能力和转化能力,属于一般题.3、A【解析】

直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.4、D【解析】

利用终点的坐标减去起点的坐标,即可得到向量的坐标.【详解】∵点,,∴向量,,.故选:D.【点睛】本题考查向量的坐标表示,考查运算求解能力,属于基础题.5、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.6、D【解析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.7、C【解析】

根据正弦定理与诱导公式,以及正弦函数的性质,逐项判断,即可得出结果.【详解】①在中,因为,所以,所以,故①正确;②,故②正确;③,故③错误;④若是锐角三角形,则,均为锐角,因为正弦函数在上单调递增,所以,故④正确;故选C【点睛】本题主要考查命题真假的判定,熟记正弦定理,诱导公式等即可,属于常考题型.8、C【解析】

由又,可得公差,从而可得结果.【详解】是等差数列又,∴公差,,故选C.【点睛】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.9、B【解析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).10、C【解析】

由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将角度化成弧度,再用象限角的表示方法求解即可.【详解】解:.故答案为:.【点睛】本题考查弧度与角度的互化,象限角的表示,属于基础题.12、【解析】

由已知计算后知也是以为斜边的直角三角形,这样的中点到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积.【详解】因为,所以是等腰直角三角形,且为斜边,为的中点,因为底面是以为斜边的等腰直角三角形,所以,点即为球心,则该三棱锥的外接圆半径,故该三棱锥的外接球的表面积为.【点睛】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明也是以为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法.13、【解析】

利用空间直角坐标系中,关于原点对称的点的坐标特征解答即可.【详解】在空间直角坐标系中,关于原点对称的点的坐标对应互为相反数,所以点关于原点的对称点的坐标为.故答案为:【点睛】本题主要考查空间直角坐标系中对称点的特点,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】

本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点到点,的距离不大于1的概率;【详解】解:由题意可知,点P到点或的距离都不大于1的点组成的集合分别以、为球心,1为半径的两个半球,其体积为,又该圆柱的体积为,则所求概率为.故答案为:【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.15、.【解析】

由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.16、【解析】

先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D118、(1);(2)-1【解析】

(1)由平面向量基本定理可得:.(2)由数量积运算可得:,运算可得解.【详解】解:(1).(2).【点睛】本题考查了平面向量基本定理及数量积运算,属基础题.19、(1)(2)【解析】

(1)将已知条件化为和后,联立解出和后即可得到通项公式;(2)根据错位相减法可得结果.【详解】(1)因为,所以解得故的通项公式为.(2)由(1)可得,则,①,②①-②得.所以故.【点睛】本题考查了等比数列通项公式基本量的计算,考查了错位相减法求数列的和,属于中档题.20、(1);(2)【解析】

(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得;利用正弦定理即可求得结果.【详解】(1)由得:,解得:(2)由余弦定理得:由正弦定理得:【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.21、(1).(2)1.【解析】

(1)利用向量平行的代数形式得到x的值;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论