2026届福建省厦门市外国语学校数学高一下期末质量检测试题含解析_第1页
2026届福建省厦门市外国语学校数学高一下期末质量检测试题含解析_第2页
2026届福建省厦门市外国语学校数学高一下期末质量检测试题含解析_第3页
2026届福建省厦门市外国语学校数学高一下期末质量检测试题含解析_第4页
2026届福建省厦门市外国语学校数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建省厦门市外国语学校数学高一下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为()A. B. C. D.2.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.3.在ΔABC中,若,则=()A.6 B.4 C.-6 D.-44.若,则的最小值为()A. B. C.3 D.25.设,,,则()A. B. C. D.6.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.107.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶ B.1∶9 C.1∶ D.1∶8.若不等式的解集为空集,则实数a的取值范围是()A. B. C. D.9.如图,在长方体中,M,N分别是棱BB1,B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为()A.30° B.45°C.60° D.90°10.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,,则数列的通项公式______.12.函数,的值域是________.13.函数单调递减区间是.14.已知直线与圆交于两点,若,则____.15.(如下图)在正方形中,为边中点,若,则__________.16.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.18.已知非零数列满足,.(1)求证:数列是等比数列;(2)若关于的不等式有解,求整数的最小值;(3)在数列中,是否存在首项、第项、第项(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.19.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大小;(2)若sinB+sinC=3,试判断△ABC的形状.20.如图,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中点,M(1)求证:AE⊥平面PAD;(2)若AB=AP=2,求三棱锥P-ACM的体积.21.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据母线长和母线与轴的夹角求得底面半径和圆锥的高,代入体积公式求得结果.【详解】由题意可知,底面半径;圆锥的高圆锥体积本题正确选项:【点睛】本题考查锥体体积的求解问题,属于基础题.2、D【解析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.3、C【解析】

向量的点乘,【详解】,选C.【点睛】向量的点乘,需要注意后面乘的是两向量的夹角的余弦值,本题如果直接计算的话,的夹角为∠BAC的补角4、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.5、B【解析】

根据与特殊点的比较可得因为,,,从而得到,得出答案.【详解】解:因为,,,所以.故选:B【点睛】本题主要考查指数函数和对数函数的单调性与特殊点的问题,要熟记一些特殊点,如,,.6、A【解析】

将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。7、D【解析】解:因为在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,那么分为的两个锥体的体积比为1:,因此锥体被截面所分成的两部分的体积之比为.1∶8、D【解析】

对分两种情况讨论分析得解.【详解】当时,不等式为,所以满足题意;当时,,综合得.故选:D【点睛】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解析】

建立空间直角坐标系,结合,求出的坐标,利用向量夹角公式可求.【详解】以为坐标原点,所在直线分别为轴,建立空间直角坐标系,如图,设,则,,,因为,所以,即有.因为,所以,即异面直线和所成角为.故选:D.【点睛】本题主要考查异面直线所成角的求解,异面直线所成角主要利用几何法和向量法,几何法侧重于把异面直线所成角平移到同一个三角形内,结合三角形知识求解;向量法侧重于构建坐标系,利用向量夹角公式求解.10、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意得出,利用累加法可求出.【详解】数列满足,,,,因此,.故答案为:.【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.12、【解析】

利用正切函数在单调递增,求得的值域为.【详解】因为函数在单调递增,所以,,故函数的值域为.【点睛】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.13、【解析】

先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由,解得或,所以函数的定义域为.令,则函数在上单调递减,在上单调递增,又为增函数,则根据同增异减得,函数单调递减区间为.【点睛】复合函数法:复合函数的单调性规律是“同则增,异则减”,即与若具有相同的单调性,则为增函数,若具有不同的单调性,则必为减函数.14、【解析】

根据点到直线距离公式与圆的垂径定理求解.【详解】圆的圆心为,半径为,圆心到直线的距离:,由得,解得.【点睛】本题考查直线与圆的应用.此题也可联立圆与直线方程,消元后用弦长公式求解.15、【解析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.16、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)1【解析】

(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.18、(1)证明见解析;(2);(3)存在,或.【解析】

(1)由条件可得,即,再由等比数列的定义即可得证;

(2)由等比数列的通项公式求得,,再由数列的单调性的判断,可得最小值,解不等式即可得到所求最小值;

(3)假设存在首项、第项、第项(),使得这三项依次构成等差数列,由等差数列的中项的性质和恒等式的性质,可得,的方程,解方程可得所求值.【详解】解:(1)证明:由,

得,即,

所以数列是首项为2,公比为2的等比数列;

(2)由(1)可得,,则

故,

设,

则,

所以单调递增,

则,于是,即,

故整数的最小值为;

(3)由上面得,,

设,

要使得成等差数列,即,

即,

得,

故为偶数,为奇数,

或.【点睛】本题考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的解法,注意运用函数的单调性求得最值,考查存在性问题的解法,注意运用恒等式的性质,是一道难度较大的题目.19、(1)60∘【解析】

(1)利用余弦定理表示出cosA,然后根据正弦定理化简已知的等式,整理后代入表示出的cosA中,化简后求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(2)由A为60°,利用三角形的内角和定理得到B+C的度数,用B表示出C,代入已知的sinB+sinC=3中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围,求出这个角的范围,利用特殊角的三角函数值求出B为60°,可得出三角形ABC三个角相等,都为60°,则三角形ABC为等边三角形.【详解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=b2+c(2)∵A+B+C=180°,∴B+C=180°-60°=120°,由sinB+sinC=3,得sinB+sin(120°-B)=3,∴sinB+sin120°cosB-cos120°sinB=3,∴32sinB+32cosB=3,即sin(∵0°<B<120°,∴30°<B+30°<150°,∴B+30°=90°,B=60°,∴A=B=C=60°,△ABC为等边三角形.【点睛】此题考查了三角形形状的判断,正弦、余弦定理,两角和与差的正弦函数公式,等边三角形的判定,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.20、(1)见证明;(2)3【解析】

(1)本题首先可以通过菱形的相关性质证明出AE⊥AD,然后通过PA⊥菱形ABCD所在的平面证明出PA⊥AE,最后通过线面垂直的相关性质即可得出结果;(2)可以将三角形APM当成三棱锥P-ACM的底面,将AE当成三棱锥P-ACM的高,最后通过三棱锥的体积计算公式即可得出结果.【详解】(1)证明:连接AC,因为底面ABCD为菱形,∠ABC=60°,所以因为E是BC的中点,所以AE⊥BC,因为AD//BC,所以AE⊥AD,因为PA⊥平面ABCD,AE⊆平面ABCD,所以PA⊥AE,又因为PA∩AD=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论