2026届重庆市四区联考高一数学第二学期期末复习检测试题含解析_第1页
2026届重庆市四区联考高一数学第二学期期末复习检测试题含解析_第2页
2026届重庆市四区联考高一数学第二学期期末复习检测试题含解析_第3页
2026届重庆市四区联考高一数学第二学期期末复习检测试题含解析_第4页
2026届重庆市四区联考高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届重庆市四区联考高一数学第二学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别为,,,且边上的高为,则的最大值是()A.8 B.6 C. D.42.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.83.若,则下列不等式中不正确的是().A. B. C. D.4.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.5.已知,,,,则()A. B. C.或 D.或6.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形7.设,,则下列不等式成立的是()A. B. C. D.8.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.9.棱长为2的正四面体的表面积是()A. B.4 C. D.1610.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.12.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.13.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.14.过点且与直线l:垂直的直线方程为______.(请用一般式表示)15.已知向量,,且,则_______.16.中,,则A的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.18.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.19.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?20.已知函数.(1)若,且对任意的,恒成立,求实数的取值范围;(2)求,解关于的不等式.21.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,这个形式很容易联想到余弦定理:cosA,①而条件中的“高”容易联想到面积,bcsinA,即a2=2bcsinA,②将②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),当A=时取得最大值4,故选D.点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、D【解析】

在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.3、D【解析】

先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.4、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.5、B【解析】

先根据角的范围及平方关系求出和,然后可算出,进而可求出【详解】因为,,,所以,,所以,所以因为,所以故选:B【点睛】在由三角函数的值求角时,应根据角的范围选择合适的三角函数,以免产生多的解.6、D【解析】

根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【点睛】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.7、D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1(-2)>(-1)(-5),不成立;取选项C,,不成立,故选D考点:不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题8、B【解析】

根据直线的斜率等于倾斜角的正切值求解即可.【详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.9、C【解析】

根据题意求出一个面的面积,然后乘以4即可得到正四面体的表面积.【详解】每个面的面积为,∴正四面体的表面积为.【点睛】本题考查正四面体的表面积,正四面体四个面均为正三角形.10、D【解析】

由正弦定理及余弦定理可得,,然后求解即可.【详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【点睛】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。12、或【解析】

设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【点睛】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.13、【解析】

作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.14、【解析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【点睛】本题考查了与已知直线垂直的直线方程的求法,属基础题.15、-2或3【解析】

用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.16、【解析】

由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.18、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】

(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.19、(1)选择C;(2)第4或第5年.【解析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.20、(1)(2)见解析【解析】

(1)由题意,若,则函数关于对称,根据二次函数对称性,可求,代入化简得在上恒成立,由,知当为最小值,根据恒成立思想,令最小值,即可求解;(2)根据题意,由,化简一元二次不等式为,讨论参数范围,写出解集即可.【详解】解:(1)若,所以函数对称轴,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式变为,因为,所以.所以当,即时,解为;当时,解集为;当,即时,解为综上,当时,不等式的解集为;当时,不等式的解集为必;当时,不等式的解隼为【点睛】本题考查(1)函数恒成立问题;(2)含参一元二次不等式的解法;考查计算能力,考查分类讨论思想,属于中等题型.21、(1)证明见解析;(2).【解析】

解法一:(1)取中点,连接,,证出,利用线面平行的判定定理即可证出.(2)取中点,连接,利用面面垂直的性质定理可得平面,过作于,可得平面,由即可求解.解法二:(1)取中点,连接,证出平面,平面,利用面面平行的判定定理可证出平面平面,再利用面面平行的性质定理即可证出.(2)取中点,连接,根据面面垂直的性质定理可得平面,再由,利用三棱锥的体积公式即可求解.【详解】解法一:(1)取中点,连接,.因为分别是的中点,所以,且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)取中点,连接,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论