版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省武胜烈面中学2026届数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三棱柱()A. B. C. D.2.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.43.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.4.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等5.关于x的不等式ax-b>0的解集是,则关于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)6.已知数列的前项和为,若,则()A. B. C. D.7.若为圆的弦的中点,则直线的方程是()A. B.C. D.8.若集合,,则(
)A. B. C. D.9.已知,是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若,,则 B.若,,,则C.若,,则 D.若,,则10.由小到大排列的一组数据,,,,,其中每个数据都小于,那么对于样本,,,,,的中位数可以表示为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.(如下图)在正方形中,为边中点,若,则__________.12.用列举法表示集合__________.13.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.14.若6是-2和k的等比中项,则______.15.如果是奇函数,则=.16.若是三角形的内角,且,则等于_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由18.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.19.已知为的三内角,且其对边分别为.且(1)求的值;(2)若,三角形面积,求的值.20.在平面直角坐标系xOy中,已知点P是直线与直线的交点.(1)求点P的坐标;(2)若直线l过点P,且与直线垂直,求直线l的方程.21.已知数列的前项和();(1)判断数列是否为等差数列;(2)设,求;(3)设(),,是否存在最小的自然数,使得不等式对一切正整数总成立?如果存在,求出;如果不存在,说明理由;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=2、D【解析】
利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.3、B【解析】
通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.4、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.5、A【解析】试题分析:因为关于x的不等式ax-b>0的解集是,所以,从而SKIPIF1<0≤0可化为SKIPIF1<0,解得,关于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),选A。考点:本题主要考查一元一次不等式、一元二次不等式的解法。点评:简单题,从已知出发,首先确定a,b的关系,并进一步确定一元二次不等式的解集。6、A【解析】
再递推一步,两个等式相减,得到一个等式,进行合理变形,可以得到一个等比数列,求出通项公式,最后求出数列的通项公式,最后求出,选出答案即可.【详解】因为,所以当时,,两式相减化简得:,而,所以数列是以为首项,为公比的等比数列,因此有,所以,故本题选A.【点睛】本题考查了已知数列递推公式求数列通项公式的问题,考查了等比数列的判断以及通项公式,正确的递推和等式的合理变形是解题的关键.7、D【解析】
圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.8、B【解析】
通过集合B中,用列举法表示出集合B,再利用交集的定义求出.【详解】由题意,集合,所以故答案为:B【点睛】本题主要考查了集合的表示方法,以及集合的运算,其中熟记集合的表示方法,以及准确利用集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】
试题分析:,是两条不同的直线,,是两个不同的平面,在A中:若,,则,相交、平行或异面,故A错误;在B中:若,,,则,相交、平行或异面,故B错误;在C中:若,,则或,故C误;在D中:若,,由面面平行的性质定理知,,故D正确.考点:空间中直线、平面之间的位置关系.10、C【解析】
根据不等式的基本性质,对样本数据按从小到大排列为,取中间的平均数.【详解】,,则该组样本的中位数为中间两数的平均数,即.【点睛】考查基本不等式性质运用和中位数的定义.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,根据向量加法的三角形法则,得到∴λ=1,.则λ+μ=.故答案为.点睛:此题考查的是向量的基本定理及其分解,由条件知道,题目中要用和,来表示未知向量,故题目中要通过正方形的边长和它特殊的直角,来做基底,表示出要求的向量,根据平面向量基本定理,系数具有惟一性,得到结果.12、【解析】
先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.13、【解析】
设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.14、-18【解析】
根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.15、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题16、【解析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解析】
(1)①举出符合条件的具体例子即可;②反证法推出矛盾;
(2)根据题意找出符合条件的为等差数列即可;
(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”
取分别为1,3,5,7,9,11,13即可;
数列②2,,,,不是“弱等差数列”
否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,
,
,又与矛盾,所以数列②2,,,,不是“弱等差数列”;
(2)证明:设,
令,取,则,
则,
,
,
就有,命题成立.
故数列为“弱等差数列”;(3)若存在这样的正整数,使得
成立.
因为,,
则,其中待定.
从而,
又,∴当时,总成立.
如果取适当的,使得,又有
所以,有
,
为使得,需要,
上式左侧展开为关于的多项式,最高次项为,其次数为,
故,对于任意给定正整数,当充分大时,上述不等式总成立,即总存在满足条件的正整数,使得等比数列:是一个长度为的“弱等差数列”.【点睛】本题要求学生能够从已知分析出“弱等差数列”要想成立所应该具备的要求,进而进行推理,转化,最后进行验证,本题难度相当大.18、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】
(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.19、(1);(2)【解析】
(1)利用正弦定理化简,并用三角形内角和定理以及两角和的正弦公式化简,求得,由此求得的大小.(2)利用三角形的面积公式求得,利用余弦定理列方程,化简求得的值.【详解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁场磁感线强度课件
- 短诗三首课件
- 短文两篇日月教学课件
- 盗梦空间培训
- 2026年冶金行业清洁生产审核题库物料守恒与节能减排
- 2026年建筑工程设计与施工题库含BIM技术应用
- 2026年工程力学原理及建筑结构安全保障试题集
- 2026年系统架构师云计算与虚拟化技术面试题
- 2026年建筑工程行业知识产权专业测试题库
- 湖北十堰市2026届高三年级元月调研考试一模英语试题
- 基于区域对比的地理综合思维培养-以澳大利亚和巴西人口分布专题复习课设计(湘教版·八年级)
- 2025年高考(海南卷)历史真题(学生版+解析版)
- 2026河北石家庄技师学院选聘事业单位工作人员36人备考考试试题附答案解析
- NB-SH-T 0945-2017 合成有机酯型电气绝缘液 含2025年第1号修改单
- 企业培训课程需求调查问卷模板
- 2026届福州第三中学数学高二上期末检测模拟试题含解析
- 2026年细胞治疗 免疫性疾病治疗项目商业计划书
- (一模)郑州市2026年高中毕业年级(高三)第一次质量预测数学试卷(含答案及解析)
- NBT 11898-2025《绿色电力消费评价技术规范》
- 2026年总经理工作计划
- 四年级数学(三位数乘两位数)计算题专项练习及答案
评论
0/150
提交评论