陕西省四校联考2026届高一数学第二学期期末综合测试试题含解析_第1页
陕西省四校联考2026届高一数学第二学期期末综合测试试题含解析_第2页
陕西省四校联考2026届高一数学第二学期期末综合测试试题含解析_第3页
陕西省四校联考2026届高一数学第二学期期末综合测试试题含解析_第4页
陕西省四校联考2026届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省四校联考2026届高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直三棱柱中,底面为直角三角形,,,是上一动点,则的最小值是()A. B. C. D.2.设a,b,c为的内角所对的边,若,且,那么外接圆的半径为A.1 B. C.2 D.43.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-54.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.156.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等7.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}8.的内角的对边分别为,若,则()A. B. C. D.9.若正项数列的前项和为,满足,则()A. B. C. D.10.已知,则下列不等式一定成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.13.若函数,的图像关于对称,则________.14.设等比数列的首项为,公比为,所有项和为1,则首项的取值范围是____________.15.已知两点,则线段的垂直平分线的方程为_________.16.程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,,,.(1)求证:数列是等差数列;(2)令,数列的前n项和为,求证:.18.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.19.已知.(1)化简;(2)若,且为第一象限角,求的值.20.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.21.已知关于的不等式.(1)当时,求不等式的解集;(2)当且m≠1时,求不等式的解集.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

连,沿将展开与在同一个平面内,不难看出的最小值是的连线,由余弦定理即可求解.【详解】解:连,沿将展开与在同一个平面内,如图所示,

连,则的长度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故选B.【点睛】本题考查棱柱的结构特征,余弦定理的应用,是中档题.2、A【解析】

由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【详解】∵,∴,整理得b2+c2-a2=bc,根据余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故选A【点睛】已知三边关系,可转化为接近余弦定理的形式,直接运用余弦定理理解三角形,注意整体代入思想.3、D【解析】

根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.4、A【解析】

对分类讨论,利用两条直线相互垂直的充要条件即可得出.【详解】由题意,当时,两条直线分别化为:,,此时两条直线相互垂直;当时,两条直线分别化为:,,此时两条直线不垂直,舍去;当且时,由两条直线相互垂直,则,即,解得或;综上可得:或,两条直线相互垂直,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.【点睛】本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.5、C【解析】

抽取比例为,,抽取数量为20,故选C.6、D【解析】

首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.7、C【解析】

根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.8、B【解析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.9、A【解析】

利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。10、C【解析】试题分析:若,那么,A错;,B错;是单调递减函数当时,所以,C.正确;是减函数,所以,故选C.考点:不等式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.12、.【解析】

根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.13、【解析】

特殊值法:由的对称轴是,所以即可算出【详解】由题意得是三角函数所以【点睛】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。14、【解析】

由题意可得得且,可得首项的取值范围.【详解】解:由题意得:,,故答案为:.【点睛】本题主要考查等比数列前n项的和、数列极限的运算,属于中档题.15、【解析】

求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.16、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】

(1)根据和的关系式,利用,整理化简得到,从而证明是等差数列;(2)利用由(1)写出的通项,利用裂项相消法求出,从而证明【详解】(1)因为,所以当时,两式相减,得到,整理得,又因为,所以,所以数列是等差数列,公差为3;(2)当时,,解得或,因为,所以,由(1)可知,即公差,所以,所以,所以【点睛】本题考查根据与的关系证明等差数列,裂项相消法求数列的和,属于中档题.18、(1);(2).【解析】

(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本题考查正弦定理和余弦定理,考查同角间的三角函数关系,考查基本不等式求最值.本题主要是考查的公式较多,掌握所有公式才能正确解题.本题属于中档题.19、(1)(2)【解析】

(1)由条件利用诱导公式进行化简所给的式子,即可求得答案;(2)由题意应用诱导公式,同角三角函数的基本关系求得的值,可得的值,即可求得答案.【详解】(1)(2)①又②解得:为第一象限角【点睛】本题主要考查了三角函数化简求值问题,解题关键是熟练使用诱导公式和同名三角函数求值的解法,考查了分析能力和计算能力,属于中档题.20、(1);(2).【解析】

(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【点睛】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论