北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题含解析_第1页
北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题含解析_第2页
北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题含解析_第3页
北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题含解析_第4页
北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城区北京第二十二中学2026届数学高一下期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④2.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.4.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.5.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-6.某学校礼堂有30排座位,每排有20个座位,一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生,这里运用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样 D.分层抽样7.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()8.已知函数的最大值为,最小值为,则的值为()A. B. C. D.9.的内角的对边分别是,若,,,则()A. B. C. D.10.已知,那么()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为偶函数,则实数的值为________.12.函数的单调增区间是________.13.将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为________.14.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.15.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.16.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:118.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)19.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.20.已知直线:在轴上的截距为,在轴上的截距为.(1)求实数,的值;(2)求点到直线的距离.21.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.2、D【解析】

利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.3、D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4、A【解析】

根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.5、D【解析】

利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.6、C【解析】抽名学生分了组(每排为一组),每组抽一个,符合系统抽样的定义故选7、C【解析】解:8、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.9、B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.10、A【解析】依题意有,故二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

根据偶函数的定义知,即可求解.【详解】因为为偶函数,所以,故,解得.故填4.【点睛】本题主要考查了偶函数的定义,利用定义求参数的取值,属于中档题.12、,【解析】

先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。13、1.【解析】

取AC的中点E,连结DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再结合ABCD是正方形可求出.【详解】取AC的中点E,连结DE,BE,显然DE⊥AC,因为平面ACD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【点睛】本题考查了空间中两点间的距离,把空间角转化为平面角是解决本题的关键.14、371【解析】

由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.15、70【解析】设高一、高二抽取的人数分别为,则,解得.【考点】分层抽样.16、4【解析】

由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)平均分为,中位数为(3)140人【解析】

(1)由题得,解方程即得解;(2)利用频率分布直方图中平均数和中位数的计算公式估计这200名学生的平均分和中位数;(3)分别计算每一段的人数即得解.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.设中位数为,则解得(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题主要考查频率分布直方图的性质,考查频率分布直方图中平均数和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)(2)【解析】

(1)观察式子特点可知,只有2,4,8三项符合等比数列特征,再根据题设条件求解即可;(2)根据等比数列通项公式表示出,再采用分组求和法化简的表达式即可【详解】(1)由题可知,只有2,4,8三项符合等比数列特征,又,故,故,;(2),,所以【点睛】本题考查等比数列通项公式的求法,等比数列前项和公式的用法,分组求和法的应用,属于中档题19、(1)见解析;(2)5;(3)见解析【解析】试题分析:(1)分离系数m,求解方程组可得直线恒过定点;(2)结合(1)的结论可得点到直线的距离的最大值是5;(3)由题意得到面积函数:,注意等号成立的条件.试题解析:(1)证明:直线方程可化为该方程对任意实数恒成立,所以解得,所以直线恒过定点(2)点与定点间的距离,就是所求点到直线的距离的最大值,即(3)由于直线过定点,分别与轴,轴的负半轴交于两点,设其方程为,则所以当且仅当时取等号,面积的最小值为4此时直线的方程为20、(1),.(2).【解析】分析:(1)在直线方程中,令可得在轴上的截距,令可得轴上的截距.(2)由(1)可得点的坐标,然后根据点到直线的距离公式可得结果.详解:(1)在方程中,令,得,所以;令,得,所以.(2)由(1)得点即为,所以点到直线的距离为.点睛:直线在坐标轴上的“截距”不是“距离”,截距是直线与坐标轴交点的坐标,故截距可为负值、零或为正值.求直线在轴(轴)上的截距时,只需令直线方程中的或等于零即可.21、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论