版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省深圳市福田区耀华实验学校国际班数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.2.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.3.已知,其中,则()A. B. C. D.4.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.315.若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小值是()A. B. C. D.6.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.7.某正弦型函数的图像如图,则该函数的解析式可以为().A. B.C. D.8.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.9.若直线被圆截得弦长为4,则的最小值是()A.9 B.4 C. D.10.若直线上存在点满足则实数的最大值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.12.空间两点,间的距离为_____.13.已知角α的终边与单位圆交于点.则___________.14.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.15.已知,,,则的最小值为______.16.的内角的对边分别为.若,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求过点且与圆相切的直线方程.18.已知α为锐角,且tanα=(I)求tanα+(II)求5sin19.已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。20.王某2017年12月31日向银行贷款元,银行贷款年利率为,若此贷款分十年还清(2027年12月31日还清),每年年底等额还款(每次还款金额相同),设第年末还款后此人在银行的欠款额为元.(1)设每年的还款额为元,请用表示出;(2)求每年的还款额(精确到元).21.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.2、B【解析】
利用三角函数的平移和伸缩变换的规律求出即可.【详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.3、D【解析】
先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【详解】因为,且,所以,因为,所以,因此,从而,,选D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.4、C【解析】试题分析:,,,故选C.考点:数列的递推公式5、B【解析】
把函数的解析式利用辅助角公式化成余弦型函数解析式形式,然后求出向右平移个单位后函数的解析式,根据题意,利用余弦型函数的性质求解即可.【详解】,该函数求出向右平移个单位后得到新函数的解析式为:,由题意可知:函数的图象关于轴对称,所以有当时,有最小值,最小值为.故选:B【点睛】本题考查了余弦型函数的图象平移,考查了余弦型函数的性质,考查了数学运算能力.6、C【解析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.7、C【解析】试题分析:由图象可得最大值为2,则A=2,周期,∴∴,又,是五点法中的第一个点,∴,∴把A,B排除,对于C:,故选C考点:本题考查函数的图象和性质点评:解决本题的关键是确定的值8、B【解析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.9、A【解析】
圆方程配方后求出圆心坐标和半径,知圆心在已知直线上,代入圆心坐标得满足的关系,用“1”的代换结合基本不等式求得的最小值.【详解】圆标准方程为,圆心为,半径为,直线被圆截得弦长为4,则圆心在直线上,∴,,又,∴,当且仅当,即时等号成立.∴的最小值是1.故选:A.【点睛】本题考查用基本不等式求最值,解题时需根据直线与圆的位置关系求得的关系,然后用“1”的代换法把凑配出可用基本不等式的形式,从而可求得最值.10、B【解析】
首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【点睛】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.12、【解析】
根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。13、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】
如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.15、【解析】
将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为1.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.16、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、直线方程为或【解析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。18、(I)tanα+π【解析】试题分析:(1)根据两角和差的正切公式,将式子展开,根据题干中的条件代入即可;(2)这是其次式的考查,上下同除以cosα(I)tanα+(II)因为tanα=1519、(1)应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)P【解析】
(1)由分层抽样的性质可得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,可得抽取7名同学,应分别从甲、乙、丙三个年级分别抽取3人,2人,2人;(2)从抽出的7名同学中随机抽取2名的所有可能结果为21种,其中2名同学来自同一年级的所有可能结果为5种,可得答案.【详解】解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2因为采取分层抽样的方法抽取7名同学,所以应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)从抽出的7名同学中随机抽取2名的所有可能结果为:ABACADAEAFAGBCBDBEBFBGCDCECF共21种CGDEDFDGEFEGFG不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则2名同学来自同一年级的所有可能结果为:AB,AC,BC,DE,FG共5种P【点睛】本题主要考查分层抽样及利用列举法求时间发生的概率,相对简单.20、(1)(2)12950元【解析】
(1)计算100000元到第二年年末的本利和,减去第一次还的元到第二年年末的本利和,再减去第二年年末还的元,可得;(2)根据100000元到第10年年末的本利和与每年还款元到第10年年末的本利和相等,得到关于的方程组,进而求得的值.【详解】(1)由题意得:.(2)因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 志愿者绩效考核制度
- 亚朵28项考核制度
- 建立考场评价考核制度
- 林业技术岗位考核制度
- 昭通市昭阳区社区《网格员》典型题题库(含答案)
- 怀化市中央遴选笔试真题试题及参考答案
- 幼儿园教师编制招聘考试试题及答案
- 重庆市綦江区社工考试真题及答案
- 湖北省荆门市胡集高中2026届数学高一下期末教学质量检测模拟试题含解析
- 加油站安全培训试题及含答案
- 2026年医疗器械行业分析报告及未来五至十年行业发展报告
- 2025-2026学年高一上学期期末英语模拟卷(译林版)(解析版)
- 基于人工智能的大学语文教学数字化转型与挑战
- 甲状腺相关眼病护理查房
- 2025年宁夏回族自治区学校教师队伍“十五五”发展规划
- 业务流程优化实施指南
- 人流后超声诊断规范与应用
- 黑龙江流浪犬管理办法
- 入党申请书专用纸-A4单面打印
- 2025企业年会总结大会跨越新起点模板
- 《中国的河流(第3课时 滔滔黄河)》示范课教学设计【湘教版八年级地理上册】
评论
0/150
提交评论