版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省乐山十校高数学高一下期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.2.已知在中,,且,则的值为()A. B. C. D.3.若实数,满足约束条件则的取值范围为()A. B. C. D.4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为()A.3 B.4 C.5 D.325.在等比数列中,,,则()A.140 B.120 C.100 D.806.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°7.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.68.在中,角的对边分别为,已知,则的大小是()A. B. C. D.9.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年10.数列中,,且,则数列前2019项和为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.12.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________13.已知数列中,其前项和为,,则_____.14.在锐角中,角的对边分别为.若,则角的大小为为____.15.已知正实数a,b满足2a+b=1,则1a16.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.18.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=19.平面四边形中,.(1)若,求;(2)设,若,求面积的最大值.20.已知,,求的值.21.如图,等腰梯形中,,,,取中点,连接,把三角形沿折起,使得点在底面上的射影落在上,设为的中点.(1)求证:平面;(2)求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2、C【解析】
先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.3、A【解析】
的几何意义为点与点所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【详解】的几何意义为点与点所在直线的斜率.画出如图的可行域,当直线经过点时,;当直线经过点时,.的取值范围为,故选A.【点睛】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.4、A【解析】
由题意:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),我们可以从第六项为1出发,逐项求出各项的取值,可得的所有不同值的个数.【详解】解:由题意:如果对正整数(首项)按照上述规则施行变换后的第6项为1,则变换中的第5项一定是2,变换中的第4项一定是4,变换中的第3项可能是1,也可能是8,变换中的第2项可能是2,也可能是16,则的可能是4,也可能是5,也可能是32,故的所有可能的取值为,故选:A.【点睛】本题主要考查数列的应用及简单的逻辑推理,属于中档题.5、D【解析】
,计算出,然后将,得到答案.【详解】等比数列中,又因为,所以,所以,故选D项.【点睛】本题考查等比数列的基本量计算,属于简单题.6、A【解析】
作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.7、C【解析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得
S=0,n=1
S=2,n=2
满足条件S<30,执行循环体,S=2+4=6,n=3
满足条件S<30,执行循环体,S=6+8=14,n=4
满足条件S<30,执行循环体,S=14+16=30,n=1
此时,不满足条件S<30,退出循环,输出n的值为1.
故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8、C【解析】∵,∴,又,∴,又为三角形的内角,所以,故。选C。9、B【解析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.10、B【解析】
由,可得,化为:,利用“累加求和”方法可得,再利用裂项求和法即可得解.【详解】解:∵,∴,整理得:,∴,又∴,可得:.则数列前2019项和为:.故选B.【点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【详解】,又,,时,面积的最大值为.故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.12、【解析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.13、1【解析】
本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。14、【解析】由,两边同除以得,由余弦定理可得是锐角,,故答案为.15、9【解析】
利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.16、-0.1【解析】
分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)周期为π,最大值为2.(2)【解析】
(1)利用倍角公式降幂,展开两角差的余弦,将函数的关系式化简余弦型函数,可求出函数的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【详解】(1)函数f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值为2;(2)由题意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,当b=c=1时,等号成立.∴a2≥4﹣1=3,即a.则a的最小值为.【点睛】本题考查三角函数的恒等变换,余弦形函数的性质的应用,余弦定理和基本不等式的应用,是中档题.18、(1)cos(α+β)=2【解析】
(1)根据向量数列积的坐标运算,化简整理得到5cos(2)根据题中条件求出cosα=310再由cos(2α+β)=【详解】解:(1)因为a=(所以a⋅=5因为a⋅b=2,所以5(2)因为0<α<π2,因为0<α<β<π2,所以因为cos(α+β)=2所以cos因为0<α<β<π2,所以0<2α+β<【点睛】本题主要考查三角恒等变换,熟记两角和的余弦公式即可,属于常考题型.19、(1);(2)【解析】
(1)法一:在中,利用余弦定理即可得到的长度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的长度;(2)在中,使用正弦定理可知是等边三角形或直角三角形,分两种情况分别找出面积表达式计算最大值即可.【详解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等边三角形或直角三角形.中,设,由正弦定理得.若是等边三角形,则.∵当时,面积的最大值为;若是直角三角形,则.当时,面积的最大值为;综上所述,面积的最大值为.【点睛】本题主要考查正弦定理,余弦定理,面积公式,三角函数最值的相关应用,综合性强,意在考查学生的计算能力,转化能力,分析三角形的形状并讨论是解决本题的关键.20、【解析】
∵,且,∴,则,∴===-.考点:本题考查了三角恒等变换21、(1)见解析;(2).【解析】
(1)取的中点,取的中点,连接、、、、,可知、均为等边三角形,可证明出平面,从而得出,再证明出四边形为平行四边形,可得出,由等腰三角形三线合一的性质可得,从而可得出,再利用线面垂直的判定定理可证明出平面;(2)过点在平面内作,垂足为点,连接,证明出平面,可得知二面角的平面角为,计算出直角三角形三边边长,即可求出,即为所求.【详解】(1)如下图所示,取的中点,取的中点,连接、、、、,在等腰梯形中,,,,为的中点,所以,,又,则,为等边三角形,同理可知为等边三角形,为的中点,,,,平面,平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计院目标考核制度
- 班组长管理考核制度
- 2026年高考模拟语文试题及答案(调研)
- 《电子商务客户服务》考核试题及答案
- 资源管理师之一级人力资源管理师能力测试试卷B卷附答案
- 证券从业试题及答案下载
- 风险管理习题含参考答案
- 护理病例讨论制度相关试题及答案
- 农产品食品检验员职业(工种)理论知识考试题库及答案(新版)
- 初级钳工题目及答案
- 安全生产费用投入等制度
- 2026版离婚协议书(官方标准版)
- 生产过程安全基本要求
- 北京市2025北京市公园管理中心所属事业单位招聘111人笔试历年参考题库典型考点附带答案详解(3卷合一)2套试卷
- 2026年江苏医药职业学院单招职业倾向性测试题库含答案
- 湖北交投集团考试真题及答案
- 超声科医学教育与学术交流的未来
- T/CADBM 3-2018竹木纤维集成墙面
- 服装行业质量控制流程
- 知识产权保护国别指南(澳大利亚)
- 廉洁应征承诺书
评论
0/150
提交评论