湖北沙市中学2026届高一数学第二学期期末考试模拟试题含解析_第1页
湖北沙市中学2026届高一数学第二学期期末考试模拟试题含解析_第2页
湖北沙市中学2026届高一数学第二学期期末考试模拟试题含解析_第3页
湖北沙市中学2026届高一数学第二学期期末考试模拟试题含解析_第4页
湖北沙市中学2026届高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北沙市中学2026届高一数学第二学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.542.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.3.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.4.某校高一甲、乙两位同学的九科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科平均分不同 B.甲、乙两人的中位数相同C.甲各科成绩比乙各科成绩稳定 D.甲的众数是83,乙的众数为875.已知非零向量与的夹角为,且,则()A.1 B.2 C. D.6.已知数列(,)具有性质:对任意、(),与两数中至少有一个是该数列中的一项,对于命题:①若数列具有性质,则;②若数列,,()具有性质,则;下列判断正确的是()A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题7.若经过两点、的直线的倾斜角为,则等于()A. B. C. D.8.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是9.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或10.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.设ω为正实数.若存在a、b(π≤a<b≤2π),使得12.直线与的交点坐标为________.13.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.14.若数列满足,且,则___________.15.数列满足下列条件:,且对于任意正整数,恒有,则______.16.已知向量,的夹角为°,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,侧面与侧面均为边长为2的等边三角形,,为中点.(1)证明:;(2)求点到平面的距离.18.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求直线与平面所成角的余弦值.19.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.20.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.21.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.2、A【解析】

一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【点睛】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.3、B【解析】

利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.4、C【解析】

分别计算出甲、乙两位同学成绩的平均分、中位数、众数,由此确定正确选项.【详解】甲的平均分为,乙的平均分,两人平均分相同,故A选项错误.甲的中位数为,乙的中位数为,两人中位数不相同,故B选项错误.甲的众数是,乙的众数是,故D选项错误.所以正确的答案为C.由茎叶图可知,甲的数据比较集中,乙的数据比较分散,所以甲比较稳定.(因为方差运算量特别大,故不需要计算出方差.)故选:C【点睛】本小题主要考查根据茎叶图比较平均数、中位数、众数、方差,属于基础题.5、B【解析】

根据条件可求出,从而对两边平方即可得出,解出即可.【详解】向量与的夹角为,且;;;;或0(舍去);.故选:.【点睛】本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.6、A【解析】

本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证.【详解】解:①若数列具有性质,取数列中最大项,则与两数中至少有一个是该数列中的一项,而不是该数列中的项,是该数列中的项,又由,;故①正确;②数列,,具有性质,,与至少有一个是该数列中的一项,且,若是该数列中的一项,则,,易知不是该数列的项,.若是该数列中的一项,则或或,a、若同,b、若,则,与矛盾,c、,则,综上.故②正确.故选:.【点睛】考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.7、D【解析】

由直线的倾斜角得知直线的斜率为,再利用斜率公式可求出的值.【详解】由于直线的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.8、D【解析】

由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.9、C【解析】

由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、ω∈[【解析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解析】

直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.13、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.14、【解析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.15、512【解析】

直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【详解】故选C。【点睛】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。16、1【解析】

把向量,的夹角为60°,且,,代入平面向量的数量积公式,即可得到答案.【详解】由向量,的夹角为°,且,,则.故答案为1【点睛】本题考查了平面向量数量积的坐标表示,直接考查公式本身的直接应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)由题设AB=AC=SB=SC=SA,连结OA,推导出SO⊥BC,SO⊥AO,由此能证明SO⊥平面ABC;(2)设点B到平面SAC的距离为h,由VS﹣BAC=VB﹣SAC,能求出点B到平面SAC的距离.【详解】(1)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面,故AC⊥SO.(2)设B到平面SAC的距离为,则由(Ⅰ)知:三棱锥即∵为等腰直角三角形,且腰长为2.∴∴∴△SAC的面积为=△ABC面积为,∴,∴B到平面SAC的距离为【点睛】本题考查线面垂直的证明,考查点到平面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.18、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)根据已知条件先求出AB,再利用菱形的对角线垂直求出AC,由求出PC,即可求得余弦值.【详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)设直线AC与BD交于点O,∵底面,∴直线与平面所成角的是.设“”,由,可得,∵四边形是菱形,在中,,则,于是,∴∴直线与平面所成角的余弦值是.【点睛】本题考查线线垂直、线面垂直的证明,菱形的性质,直线与平面所成的角,属于基础题.19、(1)(2)这样规定公平,详见解析【解析】

(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【点睛】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.20、(1)圆:.(2)证明见解析;,.【解析】

(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.21、(1)an=2×【解析】试题分析:(1)设出等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论