版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【例1】【安徽省黄山市2019届高三一模】如图,在中,为上一点,且满足,若的面积为,则的最小值为( )ABCD【答案】B设,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,则,则(当且仅当即时取“=”).故的最小值为.1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为( )ABCD【答案】B【解析】如图,设,则因为所以 则 所以的最大值为 所以选B 2、【浙江省湖州三校2019年高考模拟】已知向量
2、,的夹角为,且,则的最小值为( )ABC5D【答案】B由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,若,则的最小值是( )ABCD【答案】C由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二 与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,在时取得最小值若,则夹角的取值范围是_.【答案】,在
3、时取得最小值 解可得:则夹角的取值范围本题正确结果:1、非零向量满足=,则的夹角的最小值是 【答案】【解析】由题意得,整理得,即,夹角的最小值为.2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为_【答案】由题意:,设,因为,则与结合 ,又 与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足|=|3|=2,则在方向上的投影的最大值为()ABCD因为,所以,在方向上的投影为,其中为,的夹角又,故设,则有非负解,故 ,故,故,故选A1、已知的外接圆的圆心为,半径为2,且,则向
4、量在向量方向上的投影为( )A. 3 B. C. -3 D. 【答案】B本题选择B选项.2、设, , ,且,则在上的投影的取值范围( )A. B. C. D. 当时, 当故当时, 取得最小值为,即当时, ,即综上所述故答案选类型四 与平面向量数量积有关的最值问题【例4】【辽宁省鞍山市第一中学2019届高三一模】中,且,则的最小值等于ABCD【答案】C【解析】由题意知,向量,且,可得点D在边BC上,所以,则,即,所以时以C为直角的直角三角形如图建立平面直角坐标系,设,则,则,当时,则最小,最小值为1、已知正方形的边长为,点是边上的动点,则的最大值为( )A. B. C. D. 【答案】A 2、【
5、辽宁省鞍山市第一中学2019届高三一模】中,且,则的最小值等于ABCD【答案】C【解析】由题意知,向量,且,可得点D在边BC上,所以,则,即,所以时以C为直角的直角三角形如图建立平面直角坐标系,设,则,则,当时,则最小,最小值为故选:C3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1 B. -2 C. -3 D. -4类型五 平面向量系数的取值范围问题【例5】在矩形中, 动点在以点为圆心且与相切的圆上,若,则的最大值为( )A. B. C. D. 圆的方程为(x1)2+(y2)2=,设点P的坐标为(cos+1, sin+2),(cos+1,
6、sin+2)=(1,0)+(0,2)=(,2),cos+1=, sin+2=2,+=cos+sin+2=sin(+)+2,其中tan=2,1sin(+)1,1+3,故+的最大值为3,故选:A 1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD的边长为1,动点P满足,若,则的最大值为ABCD【答案】C【解析】解:以A为原点建立如图所示的直角坐标系:则,设, ,则由得,化简得:,又,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C2.已知,点在内,且与的夹角为,设,则的值为( )A. B. C. D. 【答案】C【解析】如
7、图所示,建立直角坐标系由已知,则 故选B 3.【上海市金山区2019届高三二模】正方形ABCD的边长为2,对角线AC、BD相交于点O,动点P满足,若,其中m、nR,则的最大值是_【答案】【解析】建立如图所示的直角坐标系,则A(1,1),B(1,1),D(1,1),P(,),所以(1,sin+1),(2,0),(0,2),又,所以,则,其几何意义为过点E(3,2)与点P(sin,cos)的直线的斜率,设直线方程为y+2k(x+3),点P的轨迹方程为x2+y21,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知的三边垂直平分线交于点, 分
8、别为内角的对边,且,则的取值范围是_【答案】1、如图,为的外心,为钝角,是边的中点,则的值为( )A. 4 B. C. D. 【答案】B2.已知点是锐角三角形的外心,若(, ),则( )A. B. C. D. 【答案】C【解析】O是锐角ABC的外心,O在三角形内部,不妨设锐角ABC的外接圆的半径为1,又,|=| |,可得=+2mn,而=|cosA0B|=1.1=+2mn+2mn, 1,如果 1则O在三角形外部,三角形不是锐角三角形, 1,3、在中, , ,若为外接圆的圆心(即满足),则的值为_.【解析】设BC的中点为D,连结OD,AD,则,则:三强化训练1.【宁夏平罗中学2019届高三上期中】
9、已知数列是正项等差数列,在中,若,则的最大值为()A1B CD【答案】C解:,故三点共线,又,数列是正项等差数列,故,解得:,2.【山东省聊城市第一中学2019届高三上期中】已知M是ABC内的一点,且,若MBC,MCA和MAB的面积分别为1,则的最小值是( )A2 B8 C6 D3【答案】D,化为则,而 =5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D3【贵州省凯里市第一中学2019届高三下学期模拟黄金卷三】已知是边长为的正三角形,且,设函数,当函数的最大值为-2时,( )ABCD【答案】D,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负
10、根.故选D项.4【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,满足,若,则的最小值为ABCD0【答案】B因为平面向量,满足,设,所以的最小值为故选:B5.已知直线分别于半径为1的圆O相切于点 若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D. 6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足, 则的最大值是()A1B2CD【答案】C解:以所在直线建立平面直角坐标系,设, ,因为所以,即,故,令(为参数),所以,因为,所以,故选C.7【四川省成都市外国语学校2019届高三一诊】如图所示,在中,点在线段上,设
11、,则的最小值为( )ABCD【答案】D【解析】解:,三点共线,即由图可知令,得,令得或(舍)当时,当时,当时,取得最小值 .故选:D8【安徽省宣城市2019届高三第二次调研】在直角三角形中,在斜边的中线上,则的最大值为( )ABCD【答案】B解:以A为坐标原点,以AB,AC方向分别为x轴,y轴正方向建立平面直角坐标系,则B(2,0),C(0,4),中点D(1,2)设 ,所以 , 时,最大值为故选:B9.在ABC 中,角A,B,C 所对的边分别为a,b,c若对任意R,不等式恒成立,则的最大值为_【答案】2【解析】由,两边平方得,则,则,又,则,即,由,从而,即,从而问题可得解.10.【2019年
12、3月2019届高三第一次全国大联考】已知的内角所对的边分别为,向量,且,若,则面积的最大值为_【答案】由,得,整理得由余弦定理得,因为,所以又 ,当且仅当时等号成立,所以,所以,即故答案为:11.【四川省广元市2019届高三第二次高考适应】在等腰梯形ABCD中,已知,动点E和F分别在线段BC和DC上,且,则的最小值为_【答案】解:等腰梯形ABCD中,已知, ,则当且仅当即时有最小值故答案为:12.【上海市七宝中学2019届高三下学期开学】若边长为6的等边三角形ABC,M是其外接圆上任一点,则的最大值为_【答案】解:是等边三角形,三角形的外接圆半径为,以外接圆圆心为原点建立平面直角坐标系,设,设
13、,则,的最大值是故答案为13【天津市第一中学2019届高三下学期第四次月考】在中,已知为直角,若长为的线段以点为中点,则的最大值为_【答案】0即的最大值为0.14【安徽省黄山市2019届高三第二次检测】已知是锐角的外接圆圆心,是最大角,若,则的取值范围为_.【答案】设是中点,根据垂径定理可知,依题意,即,利用正弦定理化简得.由于,所以,即.由于是锐角三角形的最大角,故,故.15【北京市大兴区2019届高三4月一模】已知点,点在双曲线的右支上,则的取值范围是_【答案】设点P(x,y),(x1),所以,因为,当y0时,y=,所以,由于函数在1,+)上都是增函数,所以函数在1,+)上是增函数,所以当y0时函数f(x)的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流园区智能化管理制度
- 油压式裁断机操作规程
- 办公区消防安全管理制度
- 湖北荆州市高职单招数学试题附答案
- 2025年山东(专升本)语文考试真题及答案
- 黑龙江省绥化市重点学校初一入学语文分班考试试题及答案
- 黑龙江省高职单招英语考试题库(含答案)
- 2026年福建三明社区工作者考试真题及答案
- 绿色建材检测技师(中级)考试试卷及答案
- 老年舞蹈考级指导师岗位招聘考试试卷及答案
- 七下语文《骆驼祥子》考点总结及练习题(附答案)
- 煲汤熬粥大全
- (二诊)绵阳市2023级高三第二次诊断考试语文试卷A卷+B卷(含答案)
- 2026年营口职业技术学院单招职业技能考试题库必考题
- 2025年度领导干部任前应知应会党内法规和法律知识考试题库及答案
- 2025上半年湖南省郴州市安仁县事业单位公开招聘工作人员考试试卷
- 强化训练苏科版九年级物理下册《电磁转换》专题练习试题(解析版)
- 慢阻肺全科医学管理
- 江苏省南京市2024年中考物理试卷(含答案)
- 柬埔寨施工合同模板
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
评论
0/150
提交评论