




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015年安徽省合肥市瑶海区八年级(下)期末数学试卷 一、选择题(本大题 10 小题,每小题 4 分,共 40 分) 1要使二次根式 有意义,则 m 的取值范围为( ) A m 3 B m 3 C m 3 D m 3 2下列计算正确的是( ) A( ) 2=2 B =1 C =3 D = 3一个多边形的每一个外角都是 45,则这个多边形的边数为( ) A 6 B 7 C 8 D 9 4方程 x 的根是( ) A 4 B 4 C 0 或 4 D 0 或 4 5在平行四边形 , B=110,延长 F,延长 E,连接 E+ F=( ) A 110 B 30 C 50 D 70 6方程 2x+3=0 的根的情况是( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根 D有一个实数根 7 , A, B, C 的对边分别记为 a, b, c,由下列条件不能判定 直角三角形的是( ) A A+ B= C B A: B: C=1: 2: 3 C a2= a: b: c=3: 4: 6 8甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差 下表所示: 甲 乙 丙 丁 8 9 9 8 若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员( ) A甲 B乙 C丙 D丁 9某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造, 2014 年县政府已投 资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 元人民币,那么每年投资的增长率为( ) A 20% B 40% C 220% D 30% 10如图,要使宽为 2 米的矩形平板车 过宽为 2 米的等宽的直角通道,则平板车的长最多为( ) A 2 B 2 C 4 D 4 二、填空题(本题共 4 个小题,每小题 5 分,共 20 分) 11化简 的结果是 12观察分析,探究出规律,然后填空: , 2, , 2 , , 2 , (第n 个数) 13如图,矩形 由三个矩形拼接成的,如果 影部分的面积是 24外两个小矩形全等,那么小矩形的长为 14如图,正方形 , ,点 E 在边 ,且 折至 长 边 点 G,连结 列结论: C; 等边三角形 正确结论有 (填表认为正确 的序号) 三、(本大题共 4 小题,每小题 8 分,共 16 分) 15( 8 分)计算: +3 16( 8 分)解方程:( x+7)( x+1) = 5 17( 8 分)图 1、图 2 是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边 长都是 1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段 A、 B 均在格点上 ( 1)在图 1 中画一个以 斜边的等腰直角三角形 点 C 在 侧的格点上; ( 2)在图 2 中画一个以 对角线且面积为 40 的菱形 点 D、 E 均在格点,并直接写出菱形 边长 18( 8 分)如图,在 , 0, 中位线,连接证: D 五、(本题共 3 小题,每小题 10 分,满分 32 分) 19( 10 分) “”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如: x+5=x+4+1=( x+2) 2+1, ( x+2) 2 0,( x+2) 2+1 1, x+5 1试利用 “配方法 ”解决下列问题: ( 1)填空:因为 4x+6=( x ) 2+ ;所以当 x= 时,代数式 4x+6有最 (填 “大 ”或 “小 ”)值,这个最值为 ( 2)比较代数式 1 与 2x 3 的大小 20( 10 分)如图 ,在 , 上的中线, E 是 中点,过点A 作 平行线交 延长线于点 F,连接 ( 1)求证: C; ( 2)若 判断四边形 形状,并证明你的结论 21( 12 分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段( A: 30 分; B: 29 25 分; C: 24 20 分; D: 1910 分; E: 9 0 分)统计如下: 学业考试体育成绩(分数段)统计表 分数段 人数(人) 频率 A 48 a 84 36 b E 12 据上面提供的信息,回答下列问题: ( 1)在统计表中, a 的值为 , b 的值为 ,并将统计图补充整 ( 2)甲同学说: “我的体育成绩是此次抽样调查所得数据的中位数 ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母) ( 3)如果把成绩在 25 分以上(含 25 分)定位优秀,那么该市今年 10440 名九年级学生中体育成绩为优秀的学生人数约有多少名? 七、(本题满分 12 分) 22( 12 分)某商场计划购进一批书包,经市场调查发现:某种进货价格为 30元的书包以 40 元的价格出售时,平均每月售出 600 个,并且书包的售价每提高1 元,某月销售量就减少 10 个 ( 1)若售价定为 42 元,每月可售出多少个? ( 2)若书包的月销售量为 300 个,则每个书包的定价为多少元? ( 3)当商场每月有 10000 元的销售利润时,为体现 “薄利多销 ”的销售原则,你认为销售价格应定为多少? 八、(本题满分 14 分) 23( 14 分)如图,正方形 长为 6,菱形 三个顶点 E、 G、 H 分别在正方形 边 ,连接 ( 1)求证: ( 2)当 G=2 时,求证:菱形 正方形; ( 3)设 , DG=x, 面积为 y,求 y 与 x 之间的函数解析式,并直接写出 x 的取值范围; ( 4)求 y 的最小值 2015年安徽省合肥市瑶海区八年级(下)期末数学试卷 参考答案与试题解析 一、选择题(本大题 10 小题,每小题 4 分,共 40 分) 1要使二次根式 有意义,则 m 的取值范围为( ) A m 3 B m 3 C m 3 D m 3 【考点】 二次根式有意义的条件 【分析】 根据二次根式有意义的条件列出不等式,解不等式即可 【解答】 解:由题意得, 3 m 0, 解得, m 3, 故选: B 【点评】 本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键 2下列计算正确的是( ) A( ) 2=2 B =1 C =3 D = 【考点】 二次根式的混合运算 【分析】 计算出各个选项中的式子的正确结果,即可得到哪个选项是正确的 【解答】 解: ,故选项 A 正确; 不能合并,故选项 B 错误; = ,故选项 C 错误; = ,故选项 D 错误; 故选 A 【点评】 本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法 3一个多边形的每一个外角都是 45,则这个多边形的边数为( ) A 6 B 7 C 8 D 9 【考点】 多边形内角与外角 【分析】 任意多边形的外角和为 360,用 360除以 45即为多边形的边数 【解答】 解: 360 45=8 故选: C 【点评】 本题主要考查的是多边形的外角和的应用,明确正多边形的每个外角的数 边数 =360是解题的关键 4方程 x 的根是( ) A 4 B 4 C 0 或 4 D 0 或 4 【考点】 解一元二次方程 一元一次方程 【分析】 移项后分解因式得出 x( x 4) =0,推出方程 x=0, x 4=0,求出即可 【解答】 解: x, 4x=0, x( x 4) =0, x=0, x 4=0, 解得: x=0 或 4, 故选 C 【点评】 本题考查了解一元一次方程和解一元二次方程等知识点的应用,关键是把一元二次方程转化成一元一次方程 5在平行四边形 , B=110,延长 F,延长 E,连接 E+ F=( ) A 110 B 30 C 50 D 70 【考点】 平行四边形的性质 【分析】 要求 E+ F,只需求 A 与 B 互补,所以可以求出 A,进而求解问题 【解答】 解: 四边形 平行四边形, A= 80 B=70 E+ F= E+ F=70 故选 D 【点评】 主要考查了平行四边形的基本性质,并利用性质解题平行四边 形基本性质: 平行四边形两组对边分别平行; 平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分 6方程 2x+3=0 的根的情况是( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根 D有一个实数根 【考点】 根的判别式 【分析】 把 a=1, b= 2, c=3 代入 =4行计算,然后根据计算结果判断方程根的情况 【解答】 解: a=1, b= 2, c=3, =4 2) 2 4 1 3= 8 0, 所以方程没有实数根 故选: C 【点评】 本题考查了一元二次方程 bx+c=0( a 0, a, b, c 为常数)的根的判别式 =4 0 时,方程有两个不相等的实数根;当 =0 时,方程有两个相等的实数根;当 0 时,方程没有实数根 7 , A, B, C 的对边分别记为 a, b, c,由下列条件不能判定 直角三角形的是( ) A A+ B= C B A: B: C=1: 2: 3 C a2= a: b: c=3: 4: 6 【考点】 勾股定理的逆定理;三角形内角和定理 【分析】 由三角形内 角和定理及勾股定理的逆定理进行判断即可 【解答】 解: A、 A+ B= C,又 A+ B+ C=180,则 C=90,是直角三角形; B、 A: B: C=1: 2: 3,又 A+ B+ C=180,则 C=90,是直角三角形; C、由 a2= a2+b2=合勾股定理的逆定理,是直角三角形; D、 32+42 62,不符合勾股定理的逆定理,不是直角三角形 故选 D 【点评】 本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较 小边的平方和与最大边的平方之间的关系,进而作出判断 8甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差 下表所示: 甲 乙 丙 丁 8 9 9 8 若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员( ) A甲 B乙 C丙 D丁 【考点】 方差;算术平均数 【分析】 根据平均环数比较成绩的好坏,根据方差比较 数据的稳定程度 【解答】 解: 乙、丙射击成绩的平均环数较大, 乙、丙成绩较好, 乙的方差 丙的方差, 乙比较稳定, 成绩较好状态稳定的运动员是乙, 故选: B 【点评】 本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键 9某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造, 2014 年县政府已投资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 元人民币,那么每年 投资的增长率为( ) A 20% B 40% C 220% D 30% 【考点】 一元二次方程的应用 【分析】 首先设每年投资的增长率为 x根据 2014 年县政府已投资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 元人民币,列方程求解 【解答】 解:设每年投资的增长率为 x, 根据题意,得: 5( 1+x) 2= 解得: 0%, 去), 故每年投资的增长率为为 20% 故选: A 【点评】 此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般 公式为 a( 1+x) n,其中 n 为共增长了几年, a 为第一年的原始数据,x 是增长率 10如图,要使宽为 2 米的矩形平板车 过宽为 2 米的等宽的直角通道,则平板车的长最多为( ) A 2 B 2 C 4 D 4 【考点】 勾股 定理的应用;二次根式的应用 【分析】 如图,先设平板手推车的长度为 x 米,则得出 x 为最大值时,平板手推车所形成的 等腰直角三角形连接 于点 N,利用 等腰直角三角形即可求得平板手推车的长度不能超过多少米 【解答】 解:设平板手推车的长度为 x 米, 当 x 为最大值,且此时平板手推车所形成的 等腰直角三角形 连接 于点 N 直角通道的宽为 2 m, m, O 2=2( m) 又 等腰直角三角形, C=2( m) 故选: C 【点评】 本题主要考查了勾股定理的应用以及等腰三角形知识,解答的关键是由题意得出要想顺利通过直角通道,此时平板手推车所形成的三角形为等腰直角三角形 二、填空题(本题共 4 个小题,每小题 5 分,共 20 分) 11化简 的结果是 3 【考点】 二次根式的性质与化简 【分析】 根据二次根式的性质解答 【解答】 解: = =3 故答案为: 3 【点评】 解答此题利用如下性质: =|a| 12观察分析,探究出规律,然后填空: , 2, , 2 , , 2 , (第 n 个数) 【考点】 二次根式的性质与化简 【分析】 把 2 写成算术平方根的形式,找出规律,得出被开方数是偶数列,然后写出第 n 个即可得解 【解答】 解:第一个: = , 第二个: = , 第三个: = , 第四个: 2 = = , 第五个: = , 第 n 个: , 故答案为: 【点评】 本题考查了二次根式的性质,以及数字规律,把 2 化成算术平方根的形式得到被开方数是偶数列是解题的关键 13如图,矩形 由三个矩形拼接成的,如果 影部分的面积是 24外两个小矩形全等,那么小矩形的长为 6 【考点】 一元二次方程的应用 【分析】 设小矩形的长为 小矩形的宽为( 8 x) 后表示出阴影部分的宽,从 而根据其面积列出方程求解即可 【解答】 解:设小矩形的长为 小矩形的宽为( 8 x) 根据题意得: xx( 8 x) =24, 解得: x=6 或 x= 2(舍去), 故答案为: 6 【点评】 此题考查了一元二次方程的应用,解题的关键是表示出阴影部分的长和宽,难度不大 14如图,正方形 , ,点 E 在边 ,且 折至 长 边 点 G,连结 列结论: C; 等边三角 形 正确结论有 (填表认为正确的序号) 【考点】 翻折变换(折叠问题);全等三角形的判定与性质;等边三角形的判定;正方形的性质 【分析】 由正方形和折叠的性质得出 B, B= 0,由 可证明 得出 正确;设 BG=x ,则 C x ,F+G+DE=x+2,由勾股定理求出 x=3,得出 正确;由等腰三角形的性质和外角关系得出 出平行线,得出 正确;根据 直角三角形的性质判断 错误 【解答】 解: 四边形 正方形, D=, B=D=90, , 叠得到 F=2, F, D= 0, B, 在 , , 正确; G, 设 BG=x,则 C x, F+G+DE=x+2, 在 ,由勾股定理得: x, , EG=x+2 ( 6 x) 2+42=( x+2) 2 解得: x=3, F=, 正确; F, 又 正确; 30, 60,即 等边三角形, 错误; 故答案为: 【点评】 本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用,灵活运用相关的性质定理是解题的关键 三、(本大题共 4 小题,每小题 8 分,共 16 分) 15计算: +3 【考点】 二次根式的混合运算 【分析】 先对原式化简,然后合并同类项即可解答本题 【解答】 解: +3 =4 + =4 【点评】 本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法 16解方程:( x+7)( x+1) = 5 【考点】 解一元二次方程 【分析】 整理后分解因式,即可得出两个一元一次方程,求出方程的解即可 【解答】 解:整理得: x+12=0, ( x+2)( x+6) =0, x+2=0, x+6=0, 2, 6 【点评】 本题考查了解一元二次方程的应用,能把一元二次方程转 化成一元一次方程是解此题的关键 17图 1、图 2 是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点,在每张方格纸中均画有线段 A、 B 均在格点上 ( 1)在图 1 中画一个以 斜边的等腰直角三角形 点 C 在 侧的格点上; ( 2)在图 2 中画一个以 对角线且面积为 40 的菱形 点 D、 E 均在格点,并直接写出菱形 边长 【考点】 作图 复杂作图;等腰直角三角形;菱形的判定与 性质 【分析】 ( 1)根据等腰直角三角形的性质画出图形即可; ( 2)根据菱形的面积等于对角线乘积的一半即可得出结论 【解答】 解:( 1)如图 1 所示; ( 2)如图 2 所示 【点评】 本题考查的是作图复杂作图,熟知菱形及等腰直角三角形的性质是解答此题的关键 18如图,在 , 0, 中位线,连接 证: D 【考点】 三角形中位线定理 ;矩形的判定与性质 【分析】 由 中位线,根据三角形中位线的性质,即可求得四边形 平行四边形,又 0,则可证得平行四边形 矩形,根据矩形的对角线相等即可得 D 【解答】 证明: 中位线, 四边形 平行四边形, 又 0, 平行四边形 矩形, D 【点评】 此题考查了三角形中位线的性质,平行四边形的判定与矩形的判定与性质此题综合性较强,但难度不大,解题的关键是注意 数形结合思想的应用 五、(本题共 3 小题,每小题 10 分,满分 32 分) 19( 10 分)( 2016 春 瑶海区期末) “”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如: x+5=x+4+1=( x+2) 2+1, ( x+2) 2 0,( x+2) 2+1 1, x+5 1试利用 “配方法 ”解决下列问题: ( 1)填空:因为 4x+6=( x 2 ) 2+ 2 ;所以当 x= 2 时,代数式4x+6 有最 小 (填 “大 ”或 “小 ”)值,这个最值为 2 ( 2)比较代数 式 1 与 2x 3 的大小 【考点】 配方法的应用;解一元二次方程 【分析】 ( 1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答; ( 2)利用求差法和配方法解答即可 【解答】 解:( 1) 4x+6=( x 2) 2+2, 所以当 x=2 时,代数式 4x+6 有最小值,这个最值为 2, 故答案为: 2; 2; 2;小; 2; ( 2) 1( 2x 3) =2x+2; =( x 1) 2+1 0, 则 1 2x 3 【点评】 本题考查的是配方法的应用,掌握配方法的一般步骤是 解题的关键,注意偶次方的非负性的应用 20( 10 分)( 2013临沂)如图,在 , 上的中线, E 是 点 A 作 平行线交 延长线于点 F,连接 ( 1)求证: C; ( 2)若 判断四边形 形状,并证明你的结论 【考点】 全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定 【分析】 ( 1)根据 出 D,即可得出答案; ( 2)得出四边形 平行四边形,根据直角三角形斜边上中线性质得出D,根据菱形的判定推出即可 【解答】 ( 1)证明: E 是 中点, 上的中线, E, D, 在 D, C ( 2)四边形 菱形, 证明: C, 四边形 平行四边形, 斜边 中线, C, 平行四边形 菱形 【点评】 本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,主要考查学生的推理能力 21( 12 分)( 2013中原区校级模拟)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段( A: 30 分; B: 29 25 分;C: 24 20 分; D: 19 10 分; E: 9 0 分)统计如下: 学业考试体育成绩(分数段)统计表 分数段 人数(人) 频率 A 48 a 84 36 b E 12 据上面提供的信息,回答下列问题: ( 1)在统计表中, a 的值为 60 , b 的值为 并将统计图补充整 ( 2)甲同学说: “我的体育成绩是此次抽样调查所得数据的中位数 ”请问:甲同学的体育成绩应在什么分数段内? C (填相应分数段的字母) ( 3)如果把成绩在 25 分以上(含 25 分)定位优秀,那么该市今年 10440 名九年级学生中体育成绩为优秀的学生人数约有多少名? 【考点】 频数( 率)分布直方图;用样本估计总体;频数(率)分布表 【分析】 ( 1)首先根据: =频率,由表格 A 中的数据可以求出随机抽取部分学生的总人数,然后根据 B 中频率即可求解 a,同时也可以求出 b; ( 2)根据中位数的定义可以确定中位数的分数段,然后确定位置; ( 3)首先根据频率分布直方图可以求出样本中在 25 分以上(含 25 分)的人数,然后利用样本估计总体的思想即可解决问题 【解答】 解:( 1)随机抽取部分学生的总人数为: 48 40, a=240 0, b=36 240=图所示: ( 2) 总人数为 240 人, 根据频率分布直方图知道中位数在 C 分数段; ( 3) 10440=4698(名) 答:该市九年级考生中体育成绩为优秀的学生人数约有 4698 名 故答案为; 60; C 【点评】 本题考查了频数分布直方图,训练了学生读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题 七、( 本题满分 12 分) 22( 12 分)( 2016 春 瑶海区期末)某商场计划购进一批书包,经市场调查发现:某种进货价格为 30 元的书包以 40 元的价格出售时,平均每月售出 600 个,并且书包的售价每提高 1 元,某月销售量就减少 10 个 ( 1)若售价定为 42 元,每月可售出多少个? ( 2)若书包的月销售量为 300 个,则每个书包的定价为多少元? ( 3)当商场每月有 10000 元的销
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高考历史大一轮复习第13单元西方人文精神的起源及其发展课时达标31第31讲宗教改革和启蒙运动含解析新人教版
- 学校思想政治理论课教师座谈会重要讲话精神
- 2025年5月辽宁省抚顺市新宾县上夹河镇中学九年级模拟数学测试题(含部分答案)
- 第一单元学情评估(含答案)2025-2026学年统编版八年级语文上册
- 2025年中考学业水平考试物理模拟试题(二)答案
- 2024年空气和废气监测仪器项目投资申请报告代可行性研究报告
- 2024年结构化布线系统的检测设备项目资金申请报告代可行性研究报告
- 人力资源管理师练习试卷附答案
- 2025年高考第一次模拟考试语文(新高考Ⅰ卷02)(考试版)
- 职业资格-交通工程真题库-21
- 《中医常用护理技术基础》课件-一般护理-第一节病情观察
- 微波技术在气象观测中的应用
- 《鱼类知识》课件
- 4、《通向金融王国的自由之路》
- 2024年辽宁大连市西岗区社区工作者招聘笔试参考题库附带答案详解
- 电能质量技术监督培训课件
- 江西省宜丰县圳口里-奉新县枧下窝矿区陶瓷土(含锂)矿勘查环评报告
- 《平衡记分卡BSC》课件
- 防病毒 应急预案
- 停车场利润分成协议
- 临床思维方法课件
评论
0/150
提交评论