2012大纲版高考数学理科.doc_第1页
2012大纲版高考数学理科.doc_第2页
2012大纲版高考数学理科.doc_第3页
2012大纲版高考数学理科.doc_第4页
2012大纲版高考数学理科.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012大纲理一、选择题 复数()ABCD 已知集合,则()A0或B0或3C1或D1或3 椭圆的中心在原点,焦距为4,一条准线为,则该椭圆的方程为()ABCD 已知正四棱柱中,为的中点,则直线 与平面的距离为()A2BCD1 已知等差数列的前项和为,则数列的前100项和为()ABCD 中,边的高为,若, , , , ,则()ABCD 已知为第二象限角,则()ABCD 已知为双曲线的左右焦点,点在上,则()ABCD 已知,则()ABCD已知函数的图像与轴恰有两个公共点,则()A或2B或3C或1D或1将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A12种B18种C24种D36种正方形的边长为1,点在边上,点在边上,动点从出发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点第一次碰到时,与正方形的边碰撞的次数为()A16B14C12D10二、填空题若满足约束条件,则的最小值为_.当函数取得最大值时,_.若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_.三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为_.三、解答题的内角、的对边分别为、,已知,求.(注意:在试题卷上作答无效)如图,四棱锥中,底面为菱形,底面,是上的一点,.(1)证明:平面;(2)设二面角为,求与平面所成角的大小.(注意:在试题卷上作答无效)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为,各次发球的胜负结果相互独立,.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)表示开始第4次发球时乙的得分,求的期望.(注意:在试题卷上作答无效)设函数.(1)讨论的单调性;(2)设,求的取值范围.(注意:在试卷上作答无效)已知抛物线与圆 有一个公共点,且在处两曲线的切线为同一直线.(1)求;(2)设、是异于且与及都相切的两条直线,、的交点为,求到的距离.22(注意:在试卷上作答无效)函数.定义数列如下:是过两点的直线与轴交点的横坐标.(1)证明:;(2)求数列的通项公式函数。定义数列如下:是过两点的直线与轴交点的横坐标。(1)证明:;(2)求数列的通项公式。2012大纲理参考答案一、选择题 C B C D A D A C D A A 【解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有。 B 【解析】解:结合已知中的点E,F的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA点时,需要碰撞14次即可。二、填空题 三、解答题由, 由正弦定理及可得 所以 故由与可得 而为三角形的内角且,故,所以,故. 设,以为原点,为轴,为轴建立空间直角坐标系,则设. ()证明:由得, 所以,所以, .所以,所以平面; () 设平面的法向量为,又,由得,设平面的法向量为,又,由,得,由于二面角为,所以,解得. 所以,平面的法向量为,所以与平面所成角的正弦值为,所以与平面所成角为. 记为事件“第i次发球,甲胜”,i=1,2,3,则. ()事件“开始第次发球时,甲、乙的比分为比”为,由互斥事件有一个发生的概率加法公式得 . 即开始第次发球时,甲、乙的比分为比的概率为0.352 ()由题意. ; =0.408; ; 所以 . ()因为,所以. 当时,在上为单调递增函数; 当时,在上为单调递减函数; 当时,由得, 由得或; 由得. 所以当时在和上为为单调递增函数;在上为单调递减函数. ()因为 当时,恒成立 当时, 令,则 又令,则 则当时,故,单调递减 当时,故,单调递增 所以在时有最小值,而 , 综上可知时,故在区间单调递 所以 故所求的取值范围为. 另解:由恒成立可得 令,则 当时,当时, 又,所以,即 故当时,有 当时,所以 当时, 综上可知故所求的取值范围为. (1)设,对求导得,故直线的斜率,当时,不合题意,所心 圆心为,的斜率 由知,即,解得,故 所以 (2)设为上一点,则在该点处的切线方程为即 若该直线与圆相切,则圆心到该切线的距离为,即,化简可得 求解可得 抛物线在点处的切线分别为,其方程分别为 -得,将代入得,故 所以到直线的距离为. 【D】22(1)为,故点在函数的图像上,故由所给出的两点,可知,直线斜率一定存在.故有 直线的直线方程为,令,可求得 所以 下面用数学归纳法证明 当时,满足 假设时,成立,则当时, 由即也成立 综上可知对任意正整数恒成立. 下面证明 由 由,故有即 综上可知恒成立. (2)由得到该数列的一个特征方程即,解得或 两式相除可得,而 故数列是以为首项以为公比的等比数列 ,故. (1)为,故点在函数的图像上,故由所给出的两点,可知,直线斜率一定存在。故有直线的直线方程为,令,可求得所以下面用数学归纳法证明当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论