装配图.dwg
装配图.dwg

挂钩底座注塑模具设计【含11张CAD图纸】

收藏

压缩包内文档预览:
预览图
编号:56332843    类型:共享资源    大小:3.38MB    格式:ZIP    上传时间:2020-03-11 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含11张CAD图纸 挂钩 底座 注塑 模具设计 11 CAD 图纸
资源描述:

以上为资料预览概图,下载文件后为压缩包资料文件。【清晰,无水印,可编辑】dwg后缀为cad图,doc后缀为word格式,需要请自助下载即可,有疑问可以咨询QQ 197216396 或 11970985

内容简介:
大型注塑模具设计仿真工具:2400升固体废弃物集装箱摘要 大型容器产品通常使用诸如滚塑的程序,这些技术没有零件重量或尺寸限制。TIIP,萨拉戈萨大学注塑成型的机械工程,在欧洲标准下研发的CONTENURTM固体废物的新容器高达2000升 ,其结果是一个新的主体达60公斤重。设计过程中结合了数项CAE工具(美学设计,机械设计及流变模拟),并在去年6月,显示了最终结果,通过了不同的测试。如今,在市场上有超过5000个成品在模具生产过程中没有做过基本的修改(超过100吨的重量)。本文重点论述集成工具和流程的设计与产品定义(即注射压力,冲击厚度和形状的一部分力量)的方法。在这个过程中,特别是模具控制一些参数(注射速度,温度,粘度,浇口位置.)的细节。关键词:CAE设计;容器;注塑成型1.引言 过去的几年,CAE工具在注射热塑性弹性体成型行业,构建了一个真实的革命。一个开始直到最终的解决方案(包括几个过程如开发、测试的原型,修改数据,新的测试,)的过程已经被一个更快的设计、翻译过程和最终的客户在同一个电脑文件下一起工作(“并行工程”)的过程取代。因此,对模具制造和完成时间减少极大,同时,引入了一些关于使用CAE的建议。 萨拉戈萨工业大学注射塑料(T.I.I.P)车间,C.S.I.C相关单位,在注射热塑性弹性体成型中,使用CAE工具已经超过了15个年头,同时在不同行业(机动车、家电、包装、玩具等)的上百个项目中积累了很多的经验。T.I.I.P.的工作也包含着和欧洲不同的公司一起调研的项目(聚合物流变性、半自动磨具设计等)。 同时,这个组织一直意识到安排仿真技术制造的重要性,这种形式已经合作并且由塑料工业基金会注射成型部研究会体质指导。这个组织给注射成型企业提供了各项服务,并且从中没有任何盈利(如图1)。许多国家的工业组织通过不同的程序和研究方向对这个中心进行了支持(新的工艺比如气辅技术或喷流注射成型;新的设计比如使用压力和温度的设备的过程测量技术)。 图1 T.I.I.P注塑成型区域概貌 2.容器工程 1999年,第一个参与城市固体剩余物收集容器制造的西班牙公司(Contenur SPAIN,SL)去T.IIP-aiTIIP集团共同进行大尺寸的注塑件的设计工作,随后测试了这些方案在这一领域应用的实际可能性。该项目的主要目标是快速制造大容量(2400 L和更多)的容器,与市场产品中加入了昂贵的加固结构旋转成型的焊接金属板或塑料制品产生竞争。显然,构成容器的所有部件中,主要的困难是单一模腔部分的制造。这个文献提供了几个零件和模具设计的例子和失败的建议2,3,但是不太可能找到40kg重的大的塑料部件,而且,这个模具尺寸上的一个错误没有简单的解决方案(运输到模具工具制造商的制造工厂将会太昂贵,试验和误差的方法也是不提供)。对于这个部件的设计,必须考虑到以下几个方面: 与欧洲标准EN125744要求的基本尺寸一致;卸载电阻(排出侧)如(图2);在功能条件和位置区具有高的耐冲击性;表面容易清洗;美学设计;最低的成本(不仅是加工和装配,还包括维护);安装的冲压机施加的锁模力限制(大型机器锁模力的限制范围在5000吨和10000吨之间);准备标记,也就是说,有自由的和平坦的空间;;材料的限制:采用其他CONTENUR设计的相同材料。图 2. 装卸作业的边界条件,材料非线性模型,有限元模型。 特别注意的两个限制:范围内的最低成本和最大锁模力。对于最低成本,厚度是关键(原料的成本),在制造时确定;因此,派生机器的成本大约为厚度5的平方。另一方面,为了降低其合模力,部件的投影面积和分布的压力与一部分厚度也有很大的关系(狭窄区域产生较高的注射压力,可能也会产生大合模力)。由Castany等研发的方法,不仅用于注射成型,也适用于其它类似的技术6-8,如下:(a) 测定产品的可行性:锁模力和厚度在欧洲标准允许的基本几何条件下调整尺寸。在这一步只是一般的线条设计,而不做功能细节。一些基本的结果如下表1所示。这些分析通过遗传物质的基本参数,高密度聚乙烯(表2)得到。对于高级步骤,通过几个温度条件计算。(b) 选择材料,结合熔体流动指数(MFI)和机械性能,在注入点的位置进行模拟,甚至不知道组件最终的几何形状,但得出几个注入点的最好的位置是在容器主体的底部区域。该标准同时与模具结构和零件的形状有关。(c) 分析主体的形式和零部件的厚度,比较结构上的选择方案:侧壁形状,包括气体辅助技术注入管的侧壁形状增加的惯性等也被列入考虑。(d) 显然,模具的尺寸和凹陷的存在使得部件和模块设计出现了一个其他问题。这种方式中,容器上部边框的半圆形状是一个很困难的设计问题,它由使用性能确定,但是在合模区域存在滑移。(e) 将合适的零件体积和可行的不同形式与厚度和机械阻力的形式制造相结合。在这一步骤,有限元分析、3D设计和注料仿真技术同时进行(图3、4)。最终的零件尺寸如表3。表1 简单塑料模型,第一次仿真分析结果 主体厚度(mm)/质量(kg) 最大注射压力 (MPa) 锁模力(kN) 6/52 96 166,000 7/60 71 122,000 8/68 55 94,000 9/76 44 74,000 10/84 35 59,000 表2 基本模拟计算参数 熔体温度() 240 在恒定速度下的注射时间 秒 20 百分率 50 模具温度() 40表3 2400 L主体的基本尺寸(毫米) 高度 1600 宽度 1480 长度 1600图3. 3D数模(Pro-E绘制) 图4. C-mold软件:喷出的塑料温度和冷却线管路 用这些基本尺寸核算这四步,设计组对于最终的几何图样有一个初始目标,这些细节包含输出角度,收音机,设置的辅助配件的位置(软木、滑轨等)。生产流动分析为关键性的方式,与美国,日本和墨西哥实业公司模具厂的模具工人一起将模具的各部分固定在最佳的位置。这个过程的主要方面和仿真技术(为了保证注射工人的操作其他的细节不能存在)是:1. 2.5D几何图形式样模型。2. 模腔注浇口位置。使用速度轨道去更好的控制料的流动性。根据轨道的流动浇注的设计原则使浇注与填满模腔同步结束(避免保压效应),尤其要考虑到半圆形区域的边界形状。3.最佳条件:温度的选择、涉及的厚度、设计的耐久强度评价条件。温度在210到250的评价。4. 必须要依靠正确的速度程序调节填料形式。在恒定速度的条件下,假想不允许的压力值的增长,强化机器的极限。集装箱磨具的最终布置,建议使用几个冲压速度。这个步骤用目前已经存在的小型集装箱(如图5),进行了现实的试验验证。图5 用于工业生产条件为2400L试验验证真正的集装箱模型 用CAE技术计算侧面标准的冲压速度如图6所示。但是这个“函数”如果没有实用性的编程就不能编入到注射成型机内部,因为液压系统不能精确的随着所有梯度上升。无论如何,这个优化程序后,能够得到大约15%的锁模力。 图6 计算机显示的侧面理论冲击速度5. 加注条件准备好以后,模具制造者从一个初步设想到设计的装备,已经用一个新的数值模型和最终的热流道系统模具所验证。对于减少填充压力,这个连续的工艺是有可能性的,但是实际的工艺安排,维护,一定的停工降低了其用途。6. 最后,模具冷却分析、包装和弯曲矫正过程走向成熟。在这种方式下,Kyowe工业公司根据材料的传热性采用不同的建筑材料,调整冷却管路。成品模具的重量超过了150,000kg(相当于150公吨)。事实上,在注射成型中,超过6000个部件在制造中没有发现任何问题。报废、使用性能、加工比率是和目前1000L的集装箱(每小时20-25个零件)相似的。其他组件同时设计,实际上,得到的最后的结果非常复杂,比如:集装箱的系统,明显的小于它的主体。 本文作者,定论:CAE辅助工具在设计中是最基本的工具,同相关知识和使用相似的模具进行真实的实验验证相比。鸣谢本文作者,对于T.I.I.P-a.i.T.I.I.P组织和CONTENUR 技术人员的支持、设备和最终的目标致以衷心的感谢。特别感谢D.Castany,感谢他们的专门技能在塑料注射成型工艺、设计、在很多培训班里面进行的讲解和世界研讨会。Journal of Materials Processing Technology 175 (2006) 1519An example of simulation tools use for large injection moulds design:The CONTENURTM2400l solid waste containerJ. Aisaa, C. Javierrea, J.A. De la SernabaT.I.I.P., C.S.I.C. Associated Unit, Department of Mechanical Engineering, University of Zaragoza, SpainbCONTENUR ESPANA, S.L., Pol gono Industrial Los Angeles, Getafe, Madrid, SpainAbstractLarge containers with volumes above 1100l are usually produced using procedures such as rotomoulding process. These techniques haveno part weight or dimensional limits. T.I.I.P., injection moulding plastic group of the Department of Mechanical Engineering of the ZaragozaUniversity, developed with CONTENURTMa new product under European norms for solid waste containers up to 2000l volume; the resultwas a new main body up to 60kg weight in one part. The design process combined several CAE tools (aesthetical design, mechanical designand rheological simulation) and, in last June, showed final result and passed different tests. Nowadays, more than 5000 samples are on thestreets without basic modifications in the mould (more than 100tonnes weight). The paper focuses on the methodology used to integrate tooland process design with product definition (i.e. injection pressure and clamp force versus thickness and part shape). Some parameters aboutprocess control in this particular mould (injection rate, temperature, viscosity, gate location, .) are detailed. 2005 Elsevier B.V. All rights reserved.Keywords: CAE design; Container; Injection moulding1. IntroductionCAE tools have constituted an authentic revolution in thelast years within injection of thermoplastics. The sequentialprocess until the final solution (including several setups suchas development, test of prototypes, modification of figures,new test, .) has been replaced by a faster one consistingof a procedure with the designer, transformer and final clientworking together on the same computer files (“concurrentengineering”). Therefore, the timing for mould manufac-ture and completion has been reduced enormously; however,some interesting advices about CAE use are described in 1.The Workshop of Injection of the Plastics Industry of theUniversity of Zaragoza (T.I.I.P.), C.S.I.C. Associated Unit,has been working with CAE tools on injection of thermo-plasticsformorethan15years,withenormousadvantageforhundreds of projects made in different sectors (automotive,household-electric, packaging, toys, etc.). T.I.I.P. activitiesCorresponding author.E-mail address: tiipunizar.es (J. Aisa).URL: .included several research projects (rheological characteriza-tion,semiautomaticmoulddesign,.)workingtogetherwithdifferent European companies.Nevertheless, this group has always been conscious ofthe necessity to arrange simulation with procedure of man-ufacture next to the machine, of such a form that has beencollaborated and directed by the constitution of the ResearchAssociationoftheWorkshopofInjectionofthePlasticIndus-try (a.i.T.I.I.P.) foundation, which provides services to theinjection companies without a profit spirit (Fig. 1). Thistechnological center has been supported by various nationalorganizations such as the Aragons Government and Span-ish Department of Industry through different programs andresearch lines (new processes like gas-assisted techniques orcascadeinjectionmoulding,newdesigns,process-measuringtechniques using pressure and temperature devices .).2. The CONTENUR ProjectWhen, in 1999, the first Spanish company involved inthe manufacture of containers for the collection of urban0924-0136/$ see front matter 2005 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2005.04.00616J. Aisa et al. / Journal of Materials Processing Technology 175 (2006) 1519Fig. 1. a.i.T.I.I.P. injection moulding area, general view.solid remainders (CONTENUR SPAIN, S.L.) went to theT.I.I.P.a.i.T.I.I.P. Group to work jointly on the design ofpieces of great size in injection, then arrived the moment fortesting the real possibilities of these programs in this field.Themainobjectiveoftheprojectwasthefastmanufactureof containers of great capacity (2400l and more) to competewith market products with welded metallic plate solutions orplastic ones made by rotational moulding with the inclusionof expensive reinforcement structures. Obviously, betweenall the pieces that constituted the set, the main challenge wasthe manufacture of a single part bucket.The literature shows several part and mould design exam-ples and failure advices 2,3, but it is not possible to findbig plastic parts up to 40kg weight and a mistake in thismouldsizewillhavenoeasysolution(tooltransporttomouldmakers manufacturing plant will be too expensive, and trialand error method is not available).For the design of this element, the following aspects hadto be considered: basic dimensions agreed with the European Norm EN12574 4; unloading resistance (discharge sides) (Fig. 2); high impact resistance for functional conditions and loca-tion (parking areas, for example); easily cleaning surfaces; friendly aspect, aesthetical design; minimum cost (not only for processing and assembly butalso for on-street maintenance); restriction of the clamping force imposed by the installedpressmachine(bigspecialmachineswithlimitedclampingrange between 5000 and 10,000tonnes); prepared for labelling, that is to say, with visible free andflat spaces; material restrictions: same materials used for other CON-TENUR designs.Special mention requires two limitations: minimum costand maximum clamping force under mentioned limits. For aminimum cost, thickness is fundamental (by the cost of rawmaterial), inasmuch as the time of manufacture; therefore,Fig. 2. Boundary conditions for unloading operation, nonlinear materialmodel, finite element model.the cost of the machine derived approximately depends onthe square of the thickness 5.On the other hand, to reduce the closing force, the pro-jected area of the piece and the distribution of pressures arestrongly related with part thickness (narrow sections causeda high injection pressure, which could as well suppose a highforce of closing).The methodology applied, developed by Castany et al.,not only for injection moulding but also for other similartechniques 68, is as given below:(a) Determination of the feasibility of the product: clampingforce evaluation and thickness part on an agreed basicgeometry to adjust dimensions with the European norm.Only general design lines, and not functional details,were included in this step. Some basic results are shownin Table 1. These analyses were made with basic param-eters for generic material family, high-density polyethy-lene (Table 2). For advanced steps, calculations weremade using several temperature conditions.(b) Materialselection,combiningmeltflowindex(MFI)andmechanicalbehaviour,andinjectionpointlocationsweresimulated, without even knowing the final geometry ofthecomponent.Bestresultswerefoundforseveralinjec-tion points arranged around the bottom area in the mainTable 1Results for simple plastic model, first analysis using simulation toolsMain body thickness(mm)/weight (kg)Maximum injectionpressure (MPa)Required clampingforce (kN)6/5296166,0007/6071122,0008/685594,0009/764474,00010/843559,000J. Aisa et al. / Journal of Materials Processing Technology 175 (2006) 151917Table 2Computing parameters for basic simulationsMelt temperature (C)240Injection time at constant ram speedIn seconds20In percent50Mould temperature (C)40Fig. 3. Basic line, Pro-Engineer software, before final moulding arrange-ments.body of the container. This criteria was also imposed bymould structure and part shape.(c) Analysis of the body form and thickness of the partcomparing constructive alternatives: its sidewall shapes,metallic elements of reinforcement and, if necessary,inclusion of the tubes injected with gas-assisted tech-niques to increase inertia of the sections, etc., were con-sidered.(d) Obviously,moulddimensionsandthepresenceofunder-cuts supposed a problem added for the design of pieceand mould. In this way, semicircular shape of the borderTable 3Basic dimensions for 2400l main body (mm)Height1600Width1480Length1600of the upper container was a hard design problem; it wasrequiredforfunctionalusebutsupposedanundercutareainvolving slides in the mould.(e) Part volume was adapted and different aesthetic formsappearedfeasible conjunction of the possible thick-ness by manufacture with the thickness and forms bymechanical resistance. In this step, finite analysis, solid3D design and filling simulation were made simultane-ously(Figs.3and4).Thefinalpartdimensionsareshownin Table 3.Withthesebasicmagnitudescalculatedinthesefoursteps,the design team had an initial point for the final drawing ofgeometry and the inclusion of the elements of details likesettling down of output angles, radios, position of acces-soriesoftheset(cork,skid,etc.).Industrialflowanalysiswasset in definitive way, fixing optimum positions for manifoldworking together with the mould maker, Kyowa IndustrialCompany with mould plants in the USA, Japan and Mexico.The main aspects of the process and their simulations(other details cannot be presented in order to protect indus-trial know-how) are:1. Model of the figure with geometries type 2.5D.2. Location of the entry points to the cavity. The use of racetracks for a better control of the filling was considered,following rheological design rule for simultaneous end offilling at the end of the cavity (avoiding over-pack effect),especially considering the border shape with semicircularareas.3. Optimal conditions of process: the selection of temper-ature and its relation with thickness and cycle stronglyconditioned the permissible values for the design. Valuesbetween 210 and 250C were evaluated.Fig. 4. Software C-Mold: plastic temperature at ejection and cooling lines layout.18J. Aisa et al. / Journal of Materials Processing Technology 175 (2006) 1519Fig. 5. Real container model used for testing industrial conditions in 2400lmould.4. The adjustment of the filling form by means of the cor-rectprogrammingofspeedsbecameessential.Atconstantspeed profile, the increase of pressure-supposed values ofinadmissible force of closing by the limitation imposedto the dimensions of the machine. In the final arrange-ment for container mould, several ram speed stages wererecommended.This procedure was experimentally validated with realtests using already existing smaller dimension container(Fig. 5).TypicalramspeedprofilecalculatedwithCAEtechniquesis shown in Fig. 6, but this “function” cannot be trans-latedtotheinjectionmachinewithoutpracticalarrangements,because hydraulic systems are not able to follow all thosegradients exactly. Anyway, around 15% less clamping forcecould be achieved after this optimisation procedure.5. After the filling possibilities were fixed, this was verifiedwith a new numerical model by the mould maker fromthe initial ideas sent by the design equipment and withthe final hot runner system data necessary for the mould.Fig. 6. Theoretical ram speed profile from computer results.Fig. 7. Real sample in CONTENUR assembly plant.The sequential technology was considered as a possibil-ity with the purpose of reducing filling pressure, but thepracticalarrangement,themaintenanceandpossibleshut-downs underestimated their use.6. Finally,theanalysesofcoolingofthemould,packingandwarpage induced by the process were developed. In thisway, different constructive materials were used accordingtotheirthermalconductivity,adjustingcoolinglayoutpro-vided by Kyowa Industrial Company. Final mould weightwas higher than 150,000kg (up to 150metrictonnes).Actually, more than 6000 pieces were made withoutdetecting any problem in the injection, expulsion or the lifeof the component in good condition (Figs. 7 and 8), and pro-cessing rates are similar with other existing 1000l containers(2025 parts per hour). Other components were simultane-ously designed and, in
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:挂钩底座注塑模具设计【含11张CAD图纸】
链接地址:https://www.renrendoc.com/p-56332843.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!