




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学易错题集锦指导教师:任宝安参加学生:路 栋 胡思敏 李 梅 张大山高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对读者的学习有所帮助,加强思维的严密性训练。忽视等价性变形,导致错误。 ,但 与 不等价。【例1】已知f(x) = ax + ,若求的范围。错误解法 由条件得 2 2得 +得 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数,其值是同时受制约的。当取最大(小)值时,不一定取最大(小)值,因而整个解题思路是错误的。正确解法 由题意有, 解得: 把和的范围代入得 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。忽视隐含条件,导致结果错误。 【例2】解下列各题(1) 设是方程的两个实根,则的最小值是思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。利用一元二次方程根与系数的关系易得:有的学生一看到,常受选择答案(A)的诱惑,盲从附和,这正是思维缺乏反思性的体现。如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。原方程有两个实根 当时,的最小值是8;当时,的最小值是18这时就可以作出正确选择,只有(B)正确。(2) 已知(x+2)2+ =1, 求x2+y2的取值范围。错解 由已知得 y2=4x216x12,因此 x2+y2=3x216x12=3(x+)2+当x=时,x2+y2有最大值,即x2+y2的取值范围是(, 。分析 没有注意x的取值范围要受已知条件的限制,丢掉了最小值。事实上,由于(x+2)2+ =1 (x+2)2=1 1 3x1,从而当x=1时x2+y2有最小值1x2+y2的取值范围是1, 。注意有界性:偶次方x20,三角函数1sinx1,指数函数ax0,圆锥曲线有界性等。忽视不等式中等号成立的条件,导致结果错误。【例3】已知:a0 , b0 , a+b=1,求(a+ )2+(b+ )2的最小值。错解 (a+)2+(b+)2=a2+b2+42ab+44+4=8, (a+)2+(b+)2的最小值是8.分析 上面的解答中,两次用到了基本不等式a2+b22ab,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的。因此,8不是最小值。原式= a2+b2+4=( a2+b2)+(+)+4=(a+b)22ab+(+)2+4= (12ab)(1+)+4,由ab()2= 得:12ab1=, 且16,1+17,原式17+4= (当且仅当a=b=时,等号成立),(a + )2 + (b + )2的最小值是。不进行分类讨论,导致错误【例4】已知数列的前项和,求错误解法 错误分析 显然,当时,。错误原因:没有注意公式成立的条件是。因此在运用时,必须检验时的情形。即:。以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。【例5】(1)设等比数列的全项和为.若,求数列的公比.错误解法 ,。错误分析 在错解中,由,时,应有。在等比数列中,是显然的,但公比q完全可能为1,因此,在解题时应先讨论公比的情况,再在的情况下,对式子进行整理变形。正确解法 若,则有但,即得与题设矛盾,故.又依题意 ,即因为,所以所以解得 说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。(2)求过点的直线,使它与抛物线仅有一个交点。错误解法 设所求的过点的直线为,则它与抛物线的交点为,消去得整理得 直线与抛物线仅有一个交点,解得所求直线为错误分析 此处解法共有三处错误:第一,设所求直线为时,没有考虑与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即而上述解法没作考虑,表现出思维不严密。正确解法 当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切。当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点。一般地,设所求的过点的直线为,则,令解得k = ,所求直线为综上,满足条件的直线为:章节易错训练题1、已知集合M = 直线 ,N = 圆 ,则MN中元素个数是 A(集合元素的确定性)(A) 0 (B) 0或1 (C) 0或2(D) 0或1或22、已知A = ,若AR* = F ,则实数t集合T = _。(空集)3、如果kx2+2kx(k+2)0恒成立,则实数k的取值范围是C(等号)(A) 1k0 (B) 1k0 (C) 1k0 (D) 1k04、命题3,命题0,若A是B的充分不必要条件,则的取值范围是C(等号)(A) (B) (C) (D)5、若不等式x2logax0在(0, )内恒成立,则实数的取值范围是A(等号)(A) ,1) (B) (1, + )(C) (,1)(D) (,1)(1,2)6、若不等式(1)na 2 +对于任意正整数n恒成立,则实数的取值范围是A(等号)(A) 2,)(B) (2,)(C) 3,)(D) (3,)7、已知定义在实数集上的函数满足:;当时,;对于任意的实数、都有。证明:为奇函数。(特殊与一般关系)8、已知函数f(x) = ,则函数的单调区间是_。递减区间(,1)和(1, +)(单调性、单调区间)9、函数y = 的单调递增区间是_。,1)(定义域)10、已知函数f (x)= , f (x)的反函数f 1(x)=。(漏反函数定义域即原函数值域)11、函数 f (x) = log (x 2 + a x + 2) 值域为 R,则实数 a 的取值范围是D(正确使用0和0 , b0 , a+b=1,则(a + )2 + (b + )2的最小值是_。(三相等)22、已知x kp (k Z),函数y = sin2x + 的最小值是_。5(三相等)23、求的最小值。错解1 错解2 错误分析 在解法1中,的充要条件是即这是自相矛盾的。在解法2中,的充要条件是这是不可能的。正确解法1 其中,当正 确 解 法2 取正常数,易得其中“”取“”的充要条件是因此,当24、已知a1 = 1,an = an1 + 2n1(n2),则an = _。2n1(认清项数)25、已知 9、a1、a2、1 四个实数成等差数列,9、b1、b2、b3、1 五个实数成等比数列,则 b2 (a2a1) = A(符号)(A) 8 (B) 8(C) (D) 26、已知 an 是等比数列,Sn是其前n项和,判断Sk,S2kSk,S3kS2k成等比数列吗?当q = 1,k为偶数时,Sk = 0,则Sk,S2kSk,S3kS2k不成等比数列;当q1或q = 1且k为奇数时,则Sk,S2kSk,S3kS2k成等比数列。(忽视公比q = 1)27、已知定义在R上的函数和数列满足下列条件: ,f(an)f(an1) = k(anan1)(n = 2,3,),其中a为常数,k为非零常数。(1)令,证明数列是等比数列;(2)求数列的通项公式;(3)当时,求。(2004天津)(等比数列中的0和1,正确分类讨论)28、不等式m2(m23m)i,误认短轴是b = 2;要分析直线PQ斜率是否存在(有时也可以设为x = ky + b)先;对一元二次方程要先看二次项系数为0否,再考虑0,后韦达定理。)41、 已知双曲线的右准线为,右焦点,离心率,求双曲线方程。错解1 故所求的双曲线方程为错解2 由焦点知故所求的双曲线方程为错解分析 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法。正解1 设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知 整理得 正解2 依题意,设双曲线的中心为,PC(3,0)yxO图321 MN则 解得 ,所以 故所求双曲线方程为 42、求与轴相切于右侧,并与也相切的圆的圆心的轨迹方程。错误解法 如图321所示,已知C的方程为设点为所求轨迹上任意一点,并且P与轴相切于M点,与C相切于N点。根据已知条件得,即,化简得错误分析 本题只考虑了所求轨迹的纯粹性(即所求的轨迹上的点都满足条件),而没有考虑所求轨迹的完备性(即满足条件的点都在所求的轨迹上)。事实上,符合题目条件的点的坐标并不都满足所求的方程。从动圆与已知圆内切,可以发现以轴正半轴上任一点为圆心,此点到原点的距离为半径(不等于3)的圆也符合条件,所以也是所求的方程。即动圆圆心的轨迹方程是y2 = 12x(x0)和。因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性。43、设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程。错误解法 依题意可设椭圆方程为则 ,所以 ,即 设椭圆上的点到点的距离为,则 所以当时,有最大值,从而也有最大值。所以 ,由此解得:于是所求椭圆的方程为错解分析 尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围。事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论。即:若,则当时,(从而)有最大值。于是从而解得所以必有,此时当时,(从而)有最大值,所以,解得于是所求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司搬家引流活动方案
- 公司满减活动策划方案
- 公司盛大庆典活动方案
- 公司组织插画活动方案
- 公司签单活动方案
- 公司程序员团建活动方案
- 公司职工聚会活动方案
- 公司终年庆晚宴策划方案
- 公司放电影活动方案
- 公司清明节创意活动方案
- 荆州中学2024-2025学年高二下学期6月月考历史试卷
- 2025-2030年中国婚庆产业行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2025学年苏教版四年级下学期期末测试数学试卷(含答案)
- 2025年新高考2卷(新课标Ⅱ卷)英语试卷
- 2025年中考化学必考要点知识归纳
- 三年级语文下册全册重点知识点归纳
- 公路养护材料管理制度
- JG/T 330-2011建筑工程用索
- 单位消防培训课件教学
- 项目可行性研究报告风险管理与应急措施制定策略
- 2024年湖北省初中学业水平考试地理试卷含答案
评论
0/150
提交评论