九年级数学下册26.2《等可能情形下的概率计算(2)》课件(新版)沪科版.ppt_第1页
九年级数学下册26.2《等可能情形下的概率计算(2)》课件(新版)沪科版.ppt_第2页
九年级数学下册26.2《等可能情形下的概率计算(2)》课件(新版)沪科版.ppt_第3页
九年级数学下册26.2《等可能情形下的概率计算(2)》课件(新版)沪科版.ppt_第4页
九年级数学下册26.2《等可能情形下的概率计算(2)》课件(新版)沪科版.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.2等可能情形下的概率计算(2),复习:用树状图求概率的随机事件有什么特点?,二、学习目标:,1、在解决实际问题的过程中,体会随机的思想,进一步理解概率的意义。2、理解等可能情形下的随机事件的概率,会运用列举法计算随机事件的概率。,三、自学提纲:,看书92-94页,解决以下问题:1、用列列表法计算概率有什么特点?4、自学例4、例5.,1、同时抛掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上;(2)两枚硬币正面朝上而一枚硬币反面朝上;(3)至少有两枚硬币正面朝上.,正,反,正,反,正,反,正,反,正,反,正,反,正,反,抛掷硬币试验,解:,由树状图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.,P(A),(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种,P(B),(2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种,(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种,P(C),第枚,四、合作探究:,2、一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?,1,2,一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?,结果,第一次,第二次,解:利用表格列出所有可能的结果:,红,白,红1,红2,白,红1,红2,(白,白),(白,红1),(白,红2),(红1,白),(红1,红1),(红1,红2),(红2,白),(红2,红1),(红2,红2),一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?,结果,第一次,第二次,解:利用表格列出所有可能的结果:,红,变式,白,红1,红2,白,红1,红2,(白,红1),(白,红2),(红1,白),(红1,红2),(红2,白),(红2,红1),例4.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同(2)两个骰子的点数之和是9(3)至少有一个骰子的点数为2,解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=,当一次试验所有可能出现的结果较多时,用表格比较方便!,真知灼见源于实践,3、甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”.问一次比赛能淘汰一人的概率是多少?,解:,由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.,由规则可知,一次能淘汰一人的结果应是:“石石剪”“剪剪布”“布布石”三类.,而满足条件(记为事件A)的结果有9种,P(A)=,想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?,当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法,当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图,巩固练习:在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?,在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?,解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)=,3.用数字1、2、3,组成三位数,求其中恰有2个相同的数字的概率.,解:,由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等.,其中恰有2个数字相同的结果有18个.,P(恰有两个数字相同)=,4.把3个不同的球任意投入3个不同的盒子内(每盒装球不限),计算:(1)无空盒的概率;(2)恰有一个空盒的概率.,解:,由树状图可以看出,所有可能的结果有27种,它们出现的可能性相等.,P(无空盒)=,(1)无空盒的结果有6个,(2)恰有一个空盒的结果有18个,P(恰有一个空盒)=,布置作业:,课堂作业:必做题:94页练习2、3.选做题:97页习题1课外作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论