



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2等差数列(1) 学习目标 1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项. 学习过程 一、课前准备(预习教材P36 P39 ,找出疑惑之处)复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?二、新课导学 学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征? 0,5,10,15,20,25, 48,53,58,63 18,15.5,13,10.5,8,5.5 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示. 2.等差中项:由三个数a,A, b组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A= 探究任务二:等差数列的通项公式问题2:数列、的通项公式存在吗?如果存在,分别是什么? 若一等差数列的首项是,公差是d,则据其定义可得: ,即: , 即: ,即: 由此归纳等差数列的通项公式可得: 已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项. 典型例题例1 求等差数列8,5,2的第20项; 401是不是等差数列-5,-9,-13的项?如果是,是第几项?变式:(1)求等差数列3,7,11,的第10项.(2)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n值,使得等于这一数.例2 已知数列的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定是不是等差数列,只要看(n2)是不是一个与n无关的常数. 动手试试练1. 等差数列1,3,7,11,求它的通项公式和第20项. 练2.在等差数列的首项是, 求数列的首项与公差. 三、总结提升 学习小结1. 等差数列定义: (n2);2. 等差数列通项公式: (n1). 知识拓展1. 等差数列通项公式为或. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为. 若四个数成等差数列,可设这四个数为. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 等差数列1,1,3,89的项数是( ).A. 92 B. 47 C. 46 D. 452. 数列的通项公式,则此数列是( ).A.公差为2的等差数列 B.公差为5的等差数列 C.首项为2的等差数列 D.公差为n的等差数列3. 等差数列的第1项是7,第7项是1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64. 在ABC中,三个内角A,B,C成等差数列,则B .5. 等差数列的相邻4项是a+1,a+3,b,a+b,那么a ,b . 课后作业 1. 在等差数列中,已知,d3,n10,求;已知,d2,求n;已知,求d;已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路水运试验检测考试题库考题及答案
- 2025年学法减分考试20道模拟题带答案及答案解析
- 阿克苏地区2024-2025学年七年级上学期语文期中模拟试卷
- 安徽省淮南市八公山区2024-2025学年高一下学期期末考试英语考点及答案
- 甘肃省定西市统编版2024-2025学年一年级第二学期期末语文学业能力评鉴(含答案)
- 社区民警消防知识培训课件
- 渠道整修机械合同范本
- 普通房屋继承合同范本
- 成品鞋加工合同范本
- 咨询类设计合同范本
- ICU保护性约束护理
- 花园景观设计课件
- 破碎岗位安全管理制度
- 2025至2030年中国石油石化装备制造行业市场现状分析及投资前景研判报告
- 上海市闵行区2024-2025学年三年级下学期期末考试语文试题(含答案)
- 2025电气设计强条
- 2025年中国城市礼物发展白皮书
- 土方消纳处置合同协议书
- 2025综合管理岗位劳动合同模板版
- T/CCS 075-2023煤矿柔性薄喷材料喷涂施工技术要求
- 医院健康培训课件
评论
0/150
提交评论