




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.1 函数的概念(第一课时)课 型:新授课教学目标:(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。教学过程:一、问题链接:1 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2回顾初中函数的定义:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。表示方法有:解析法、列表法、图象法.二、合作探究展示:探究一:函数的概念:思考1:(课本P15)给出三个实例: A一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。 B近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图) C国际上常用恩格尔系数(食物支出金额总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作: 函数的定义:设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x思考2:构成函数的三要素是什么?答:定义域、对应关系和值域小试牛刀1下列四个图象中,不是函数图象的是( B ).A.B. C.D.xy0-22xy0-222xy0-222xy0-222 A. B. C . D.2集合,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是( B ).归纳:(1)一次函数y=ax+b (a0)的定义域是R,值域也是R; (2)二次函数 (a0)的定义域是R,值域是B;当a0时,值域;当a0时,值域。 (3)反比例函数的定义域是,值域是。探究二:区间及写法:设a、b是两个实数,且a5、x|x-1、x|x0时,求的值。(答案见P17例一) 练习已知函数f(x)=x2+2,求f(-2),f(-a),f(a+1), f(f(x).答案:f(-2)=6 f(-a)=a2+2 f(a+1)=a2+2a+3 f(f(x)=x4+4x2+6【例2】已知函数.(1)求的值;(2)计算:.解:(1)由.(2)原式点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.(四)随堂检测: 1 用区间表示下列集合:2 已知函数f(x)=3x5x2,求f(3)、f(-)、f(a)、f(a+1)的值;3 课本P19练习2。4已知x1,则_3+_;f_57_5已知,则= 1 .归纳小结:函数模型应用思想;函数概念;二次函数的值域;区间表示作业布置:习题1.2A组,第4,5,6; 1.2.1函数的概念(第二课时)课 型:新授课教学目标:(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;(2)掌握复合函数定义域的求法;(3)掌握判别两个函数是否相同的方法。教学重点:会求一些简单函数的定义域与值域。教学难点:复合函数定义域的求法。教学过程:一、问题链接:1. 提问:什么叫函数?其三要素是什么?函数y与yx是不是同一个函数?为什么?2. 用区间表示函数yaxb(a0)、yaxbxc(a0)、y(k0)的定义域与值域。二、合作探究展示:探究一:函数定义域的求法: 函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。例1:求下列函数的定义域 ; ; .解:x-2=0,即x=2时,分式无意义,而时,分式有意义,这个函数的定义域是.3x+20,即x-时,根式无意义,而,即时,根式才有意义,这个函数的定义域是|.当,即且时,根式和分式 同时有意义,这个函数的定义域是|且另解:要使函数有意义,必须: 这个函数的定义域是: |且 学生试求订正小结:定义域求法(分式、根式、组合式)说明:求定义域步骤:列不等式(组) 解不等式(组)引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集) (5)满足实际问题有意义. 探究二:复合函数的定义域求法: (1)已知f(x)的定义域为(a,b),求f(g(x)的定义域;求法:由axb,知ag(x)b,解得的x的取值范围即是f(g(x)的定义域。 (2)已知f(g(x)的定义域为(a,b),求f(x)的定义域;求法:由axb,得g(x)的取值范围即是f(x)的定义域。例2已知f(x)的定义域为0,1,求f(x1)的定义域。答案:练习已知函数的定义域为,则的定义域为( C ). A B C D例3已知f(x-1)的定义域为-1,0,求f(x+1)的定义域。答案:巩固练习:1求下列函数定义域:(1); (2)答案:(1) (2)2(1)已知函数f(x)的定义域为0,1,求的定义域; (2)已知函数f(2x-1)的定义域为0,1,求f(1-3x)的定义域。答案:(1) (2)探究三:求函数的值域已知函数求(1)(2)x(3)x答案:(1)(2)(3)探究四:函数相同的判别方法:例5(课本P18例2)下列函数中哪个与函数y=x相等?(1); (2);(3); (4) 。分析: 构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。解:(),,定义域不同且值域不同,不是; (),,定义域值域都相同,是同一个函数;|=,;值域不同,不是同一个函数。(4) 定义域不同,不是同一个函数。练习1下列各组函数中,表示同一函数的是( C ). A.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现场处置方案编制课件
- 2025年能源行业CCS项目经济性研究报告:市场前景与投资建议
- 2025年物流行业物流园区智能化改造对物流行业行业政策法规的适应报告
- 山西省晋中市左权县2022-2023五年级上学期期中科学试题(含答案)
- 2026届贵州省贵阳市清镇北大培文学校贵州校区化学高一上期末考试试题含解析
- 2025年导游资格证专项训练试卷:导游业务与法规冲刺押题
- 2025年Python大数据处理培训试卷:实战演练与冲刺押题
- 2025年秋季初级经济师职业资格考试 经济基础知识模拟试卷及答案
- 2025年注册会计师(CPA)考试 会计科目历2025年真题解析与模拟试卷
- 江西省白鹭洲中学2026届高二化学第一学期期中学业水平测试试题含解析
- 企业信息化项目建设进度和成果汇报课件
- 高等数学期末试卷及答案
- 从0开始跨境电商-第三章-阿里巴巴国际站入门-OK
- 新能源电站远程监控系统建设方案
- 《紫藤萝瀑布》《丁香结》《好一朵木槿花》
- 2023柔性棚洞防护结构技术规程
- 河流地貌的发育 - 侵蚀地貌
- 离网光伏发电系统详解
- 广告文案写作(第二版)全套教学课件
- 《国家电网公司电力安全工作规程(配电部分)》
- 金融学黄达ppt课件9.金融市场
评论
0/150
提交评论