版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、主讲老师:陈震主讲老师:陈震2.1向量的物理背景与向量的物理背景与概念及几何表示概念及几何表示 老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠? ABCD情境设置情境设置 老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠? ABCD 猫的速度再快也没用,因为方向错了.结论:情境设置情境设置 请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?讲授新课讲授新课讲授新课讲授新课1. 向量的概念:向量的概念:我们把既有大小又有方向的量叫向量.讲授新课讲授新课1. 向量的概念:向量的概念:我们把既有大小又有方向的量叫向量.讲授新课讲授新课(1)数量与向量有何区别?(2)如何
2、表示向量? (3)有向线段和线段有何区别和联系?分别 可以表示向量的什么?(4)长度为零的向量叫什么向量?长度为1 的向量叫什么向量?阅读教材,回答下列问题:阅读教材,回答下列问题:讲授新课讲授新课(5)满足什么条件的两个向量是相等向量? 单位向量是相等向量吗?(6)有一组向量,它们的方向相同或相反, 这组向量有什么关系?(7)如果把一组平行向量的起点全部移到一 点O,这是它们是不是平行向量?这时 各向量的终点之间有什么关系?阅读教材,回答下列问题:阅读教材,回答下列问题:讲授新课讲授新课A(起点) B(终点)a 数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性
3、,不能比较大小. 2. 数量与向量的区别:数量与向量的区别:讲授新课讲授新课3. 向量的表示方法:向量的表示方法:AB用有向线段表示; 用字母a、b(黑体,印刷用)等表示;用有向线段的起点与终点字母:的大小长度称为向量的模,向量AB记作AB.;讲授新课讲授新课 具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4. 有向线段:有向线段:讲授新课讲授新课 具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:4. 有向线段:有向线段:讲授新课讲授新课 具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素
4、,与起点 无关,只要大小和方向相同,这两个向 量就是相同的向量;(2)有向线段有起点、大小和方向三个素, 起点不同,尽管大小和方向相同,也是 不同的有向线段.4. 有向线段:有向线段:讲授新课讲授新课5. 零向量、单位向量概念:零向量、单位向量概念:长度为1个单位长度的向量, 叫单位向量.长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.讲授新课讲授新课5. 零向量、单位向量概念:零向量、单位向量概念:长度为1个单位长度的向量, 叫单位向量.长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.说明:说明: 零向量、单位向量的定义都只
5、是限制了大小.讲授新课讲授新课abc6.平行向量定义:平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.讲授新课讲授新课6.平行向量定义:平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.abc说明:说明:(1) 综合、才是平行向量的完整定义;(2) 向量a、b、c平行,记作abc.讲授新课讲授新课例例1. 如图,试根据图中的比例尺以及三地的位置,在图中分别用向量表示A地至B、C两地的位移,并求出A地至B、C两地的实际距离(精确到1km).ABC讲授新课讲授新课例例2. 判断:(1) 平行向量是否一定方向相同?(2) 与任意向量都平行的向量是
6、什么向量?(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?讲授新课讲授新课不一定例例2. 判断:(1) 平行向量是否一定方向相同?(2) 与任意向量都平行的向量是什么向量?(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?讲授新课讲授新课不一定零向量例例2. 判断:(1) 平行向量是否一定方向相同?(2) 与任意向量都平行的向量是什么向量?(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?讲授新课讲授新课不一定零向量平行向量例例2. 判断:(1) 平行向量是否一定方向相同?(2) 与任意向量都平行的向量是什么向量?(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?讲授新课讲授新课不一定零向量平行向量练习练习.教材P.77练习第1、2、3题.例例2. 判断:(1) 平行向量是否一定方向相同?(2) 与任意向量都平行的向量是什么向量?(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?1.描述向量的两个指标:模和方向.2. 平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年证券市场管理服务合作协议书
- 2025年工业废气净化装置合作协议书
- 家居控制中心创新创业项目商业计划书
- 排球场地材料创新创业项目商业计划书
- 医用智能病历车创新创业项目商业计划书
- 光伏产品国际销售创新创业项目商业计划书
- 制药用混合设备升级创新创业项目商业计划书
- 家畜饲料包装设计与品牌塑造创新创业项目商业计划书
- 安徽省铜陵一中2026届化学高三上期中学业质量监测模拟试题含解析
- 广告宣传合同范本与签订指南
- 2025广东广州生态环境监测中心站招聘编外人员4人笔试考试备考试题及答案解析
- 大象版科学六年级上册全册教案(含反思)
- 病假解除劳动合同
- 高考成语专项训练
- 2025上海市生物医药技术研究院招聘专技人员2人考试参考题库及答案解析
- 上海入团考试试题及答案
- 2025-2026学年上学期高一数学北师大版期中必刷常考题之函数
- 江西省委社会工作部2025年公开选调事业单位工作人员【10人】考试模拟试题及答案解析
- 农产品包装自动化流水线创新创业项目商业计划书
- 2025年外事办公室韩语翻译笔试bi备
- 中国2型糖尿病防治指南(2024版)
评论
0/150
提交评论