版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Speech recognition and NER problems with recurrent neural networksOctober 9, 2018RNNMemoryMemoryRNN and CNNLSTM Comparing the fully connected layers, the parameters in each LSTM neuron will be more than at lease 4 times more. So there is GRU, and you can consider using GRU when LSTM is facing a risk
2、 of overfitting In other articles, sigmoid activation is sometimes used instead of tanh activation. It overcomes the gradient vanish problem, but still cant solve the problem of gradient explosionFurther Like CNN, simple RNN and LSTM can be deep. In speech recognition, the device can choose to give
3、the final result of the recognition after obtaining the entire speech. Conventional RNNS are only able to make use of previous context, and there is no reason not to exploit future context as well.BRNNsStill it can be further, just try to combine BRNNs with LSTM, and that becomes bidirectional LSTM.
4、Deep bidirectional RNNsStructure learning HMMsX: Y:start:Johnsawthetree.endThe task: given X, find YFrom HMMs to CRFsLSTMs-CRFsP(x, y) for CRFsW WCRF-gradient ascentConnectionist Temporal Classification (CTC) The CTC network predicts only the sequence of phonemes (typically as a series of spikes, se
5、parated by blanks). The choice of labelling can be read directly from the CTC outputs (follow the spikes).And the predictions of the framewise network must be post-processed before use.Prefix search decodingEach node either ends or extends the prefix at its parent node. The number above an extending
6、 node is the total probability beginning with that prefix. At every iteration the extensions of the most probable remaining prefix are explored.This strategy includes two aspects, one is that the same path does not repeat the calculation, and the other is that the state is no longer searched.The CTC
7、 Forward-Backward Algorithmresult1Speech recognition with deep recurrent neural networks. Author: Alex Graves, Abdel-Rahman Mohamed and Geoffrey Hinton2 Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. Author: Alex Graves, Santiago Fernandez3 Neura
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭装修下水道铸铁管道安装合同协议
- 2025年汽车零部件加工合同(简版)
- 家用空调维修保养合同
- 加油站与运输企业合作合同范本合同协议
- 二房东2025年贝壳租赁代理合同范本
- 协议书客户的营销策略
- 简易农村分房协议书范本
- 祠堂拆迁补偿协议书样板图
- 保险代销协议书
- 注册监理师聘用协议书
- 【MOOC】知识产权法-西南政法大学 中国大学慕课MOOC答案
- 屋面瓦更换施工方案
- 大国三农II-农业科技版智慧树知到期末考试答案章节答案2024年中国农业大学
- 智能导盲杖毕业设计创新创业计划书2024年
- 理工英语4-03-国开机考参考资料
- 起重机指挥模拟考试题库试卷三
- 施工单位参加监理例会汇报材料(范本)
- 幼儿园政府拨款申请书
- 马克思主义与社会科学方法论课后思考题答案全
- 协议书代还款协议书
- 数学人教版五年级上册课件练习二十四
评论
0/150
提交评论