六年级奥数第17讲最大最小问题教师版_第1页
六年级奥数第17讲最大最小问题教师版_第2页
六年级奥数第17讲最大最小问题教师版_第3页
六年级奥数第17讲最大最小问题教师版_第4页
六年级奥数第17讲最大最小问题教师版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 PAGE 页码 13 / NUMPAGES 总页数 13六年级奥数第17讲最大最小问题教师版教学目标学会在题目中判断出限制条件;学会分数知识的综合运用;从题目限制条件中分析最大最小问题。知识梳理 在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。解答最大最小问题通常要用下面的方法:1、枚举比较法。当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子

2、从“极端”情形入手,缩短解题过程。人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。典例分析 考点一:简单最大最小问题例1、把1、2、3、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。问这个和最大值是多少?【解析】为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填1116。然后根据“三角形三边上7个小三角形内数的

3、和相等”这一条件,就可以计算出这个和的最大值了。234161112131415163=72例2、有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?【解析】3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。根据42.53=14千克0.5千克可知:最重的一堆是140.5=14.5千克,即由6千克和8.5千克组成,另外两堆分别是14千克。例3、一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排

4、第三名的同学至少得多少分?分数取整数【解析】除得65分的同学外,其余5位同学的总分是91665=481分。 根据第三名同学得分要至少,也就说其他四人得分要尽量高,第一、第二名分别得100分和99分,而接近的三个不同分是93、94、95。所以,第三名至少得95分。例4、一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。现由两个小组分别承包这两项工作,工时如下表一种庄稼不割好、捆好,不准运输,这两组从开工到完工最少经过多少小时?【解析】先把各类庄稼从开工到完工所用的时间分别算出来:大豆7+5=12小时,谷子3+6=9小时,高梁5+1=6小时,小米5+9=14小

5、时。平均每个小组用12+9+6+142=20.5小时,但实际做不到。因此,根据各类庄稼所需时间相加,使其最接近20.5小时。12+9=21小时是最少经过的时间。例5、A、B、C是三个风景点,从A出发经过B到达C要走18千米,从A经过C到B要走16千米,从B经过A到C要走24千米。相距最近的是哪两个风景点?它们之间相距多少千米?【解析】根据题意可知,AB+BC=18千米,AC+BC=16千米,AB+AC=24千米,用18+16+242就能算出AB+BC+AC=29千米。 因此,AC=29-18=11千米,AB=29-16=13千米,BC=29-24=5千米。 B、C两个风景点的距离最近,只相距5

6、千米。考点二:数论中的极端思想例1、18这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。那么这两个四位数各是多少?【解析】8531和7642。高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。同理可确定十位和个位数。例2、有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【解析】要想使自然数尽量大,数位就要尽量多,所以数位高的数值应尽量小,故10112358满足条件如果最前面的两个数字

7、越大,则按规则构造的数的位数较少,所以最前面两个数字尽可能地小,取1与0。例3、某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元100元的钱数整数元,那么至少需要准备货币多少张?【解析】为了使货币越少越好,那么9元的货币应该尽量多才行。当有10张9元时,容易看出1、1、3、5这四张加上后就可以满足条件。当9元的货币超过11张时,找不到比14张更少的方案。当9元的货币少于10张时,至少有19元需要由5元以下的货币构成,且1元的货币至少2张,这样也找不到比14张更少的方案。综上分析可以知道,最少需要10张9元的、2张1元的、1张3元的、1张5元的,共14张货币。例4、a和b是

8、小于100的两个不同的自然数,求 EQ F(ab,a+b) 的最大值。【解析】根据题意,应使分子尽可能大,使分母尽可能小。所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99 EQ F(ab,a+b) 的最大值是 EQ F(991,99+1) = EQ F(49,50) 答: EQ F(ab,a+b) 的最大值是 EQ F(49,50) 例5、有甲、乙两个两位数,甲数 EQ F(2,7) 等于乙数的 EQ F(2,3) 。这两个两位数的差最多是多少?【解析】甲数:乙数= EQ F(2,3) : EQ F(2,7

9、) =7:3,甲数的7份,乙数的3份。由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是147-3=56。 例6、将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 129899100从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【解析】要得到最大的数,左边应尽量多地保留9。因为159中有109个数码,其中有6个9,要想左边保留6个9,必须划掉159中的109-6103个数码,剩下的数码只有192103=89个,不合题意,所以左边只能保留5个9,即保留149中的5个9,划掉149中其余的84个数码。

10、然后,在后面再划掉16个数码,尽量保留大数见下图:所求最大数是999997859606199100。同理,要得到最小的数,左边第一个数是1,之后应尽量保留0。250中有90个数码,其中有5个0,划掉其余90-5=85个数码,然后在后面再划掉15个数码,尽量保留小数见下图:;所求最小数是10000012340616299100。考点三:智巧趣题的极端思想例1、99个苹果要分给一群小朋友,每一个小朋友所分得的苹果数都要不一样,且每位小朋友至少要有一个苹果问:这群小朋友最多有几位? 【解析】1+2+3+13=9199,1+2+3+14=10599,说明若13位各分得1,2,3,13个苹果,未分完99

11、个,若14位各分得1,2,3,14个苹果,则超出99个因91+8=99,在13位上述分法中若把剩下的8个苹果分别加到后8位人上,就可得合题意的一个分法:13人依次分1,2,3,4,5,7,8,9,10,11,12,13,14个。所以最多有13位小朋友。注:13人的分法不唯一例2、某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到过一次,则这三天都迟到的学生最多有多少人?【解析】三天都迟到的要尽量多,则将迟到的22人次分为仅迟到一次和三天都迟到的。可求出三天都迟到的学生最多有:15+12+9-222=7人。例3、如图,司机开车按顺序到

12、五个车站接学生到学校,每个站都有学生上车。第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半。车到学校时,车上最少有多少学生?【解析】因为每个站都有学生上车,所以第五站至少有1个学生上车假如第五站只有一个学生上车,那么第四、三、二、一站上车的人数分别是2,4,8,16个因此五个站上车的人数共有1+2+4+8+16=31人,很明显,如果第五站有不止一个学生上车,那么上车的总人数一定多于31个。所以,最少有31个学生。例4、若干名家长爸爸或妈妈,他们都不是老师和老师陪同一些小学生参加某次数学竞赛,已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师

13、,那么在这22人中,爸爸有多少人? 【解析】家长比老师多,所以老师少于222=11人,即不超过10人;相应的,家长就不少于12人。在至少12个家长中,妈妈比爸爸多,所以妈妈要多于122=6人,即不少于7人。因为女老师比妈妈多2人,所以女老师不少于9人。但老师最多就10个,并且还至少有1个男老师,所以老师必定是9个女老师和1个男老师,共10个。那么,在12个家长中,就有7个是妈妈。所以,爸爸有12-7=5人。例5、三个数字能组成6个不同的三位数。这6个三位数的和是2886。求所有这样的6个三位数中的最小的三位数。【解析】因为三个数字分别在百位、十位、个位各出现了2次。所以,2886222能得到三

14、个数字的和。 设三个数字为a、b、c,那么6个不同的三位数的和为abc+acb+bac+bca+cab+cba a+b+c1002+a+b+c1002+a+b+c1002 a+b+c222 2886 即a+b+c288622213 答:所有这样的6个三位数中,最小的三位数是139。实战演练 课堂狙击1、两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【解析】将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,114=14;15=2+13,213=26;15=3+12,312=36;15=4+11,411=44;15=5+10

15、,510=50;15=6+9,69=54;15=7+8,78=56。由此可知把15分成7与8之和,这两数的乘积最大。结论:如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。特别地,当这两个数相等时,他们的乘积最大。 2、设自然数n有下列性质:从1、2n中任取50个不同的数,其中必有两数之差等于7,这样的n最大不能超过多少?【解析】当n=98时,将1、298按每组中两数的差为7的规则分组:1,8、2、9、7,14、15,2290,97、91、98。一共有49组,所以当任取50个数时,必有两个数在同一组,他们的差等于7。当n=99时,取上面每组中的前一个数,即1、27、1521、293

16、5、4349、5763、7177、8591和99一共是50个数,而它们中任2个的差不为7。因此n最大不能超过98。3、设x和y是选自前100个自然数的两个不同的数,求 EQ F(xy,x+y) 的最大值。【解析】 EQ F(99,101) 4、有甲、乙两个两位数,甲数的 EQ F(3,10) 等于乙数的 EQ F(4,5) 。这两个两位数的差最多是多少?【解析】甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。 5、在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。要求:1算式的结果等于37; 2这个算式中的所有减数前面添了减号

17、的数的乘积尽可能地大。那么,这些减数的最大乘 积是多少?【解析】把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍。因为55-3718,所以我们变成减数的这些数之和是182=9。对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好不包括1。9最多可拆成三数之和234=9,因此这些减数的最大乘积是23424,添上加、减号的算式是:10 9 8 7 6 5- 4- 3- 2 137。6、149位议员中选举一位议长,每人可投一票。候选人是A,B,C三人。开票中途,A已得45票,B已得20票,C

18、已得35票。如果票数最多者当选,那么A至少再有多少票才能一定当选? 【解析】由题意得:45+20+35=100,还有149-100=49票。 45-35=10,如果49票中有10票都给C,49-10=39; 那么A至少还要有20票才能当选。7、某班学生50人,年龄均为整数,年龄的平均值为12.2,已知班上任意两人的年龄差都不超过3。那么这班学生中年龄最大的能是多少岁?如果有一个学生的年龄达到这个值,那么这个班里年龄既不是最大也不是最小的学生最多有多少人?【解析】因为全班50人的年龄总和比平均12岁的年龄总和多12.2-1250=10岁, 所以年龄最大的能是12+3=15岁。 如果有人年龄达到1

19、5岁,那么剩下的49人的年龄和比平均12岁的年龄和多103=7岁; 所以最多有7人的年龄大于12岁,小于15岁。8、阶梯教室座位有10排,每排有16个座位,当有150个人就座,某些排坐着的人数就一样多。我们希望人数一样的排数尽可能少,这样的排数至少有多少排?【解析】至少有4排。如果10排人数各不相同,那么最多坐:16+15+14+13+12+11+10+9+8+7=115人;如果最多有2排人数一样,那么最多坐:16+15+14+13+122=140人;如果最多有3排人数一样,那么最多坐:16+15+143+13=148人;如果最多有4排人数一样,那么至多坐:16+154+142=152人。14

20、8150152, 所以,至少有4排。课后反击1、如果一个自然数N的各个位上的数字和是1996,那么这个自然数最小是几?【解析】19969=2217,N= 。2、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少? 【解析】把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于45+46+49+523=64。用总数减去最大的三数之和,就是这四个数中的最小数,即:64-52=12。3、有四袋糖块,其中任意三袋的总和都超过60块,那么这四袋糖块的总和至少有多少块? 【解析】最多的一袋糖数不小于另三袋糖的平均数,故不小于613=,即它不小于21。从而四袋糖总

21、和不小于21十61=82块。比如四袋糖数量分别为21,21,20,20即可。4、设x和y是选自前200个自然数的两个不同的数,且xy,1求 EQ F(x+y,xy) 的最大值;2求 EQ F(x+y,xy) 的最小值。【解析】1399 2 EQ F(201,199) 5、甲、乙两数都是三位数,如果甲数的 EQ F(5,6) 恰好等于乙数的 EQ F(1,4) 。这两个两位数的和最小是多少?【解析】甲、乙两数的比是3:10,甲数最小是102,和最小是442。6、如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。问:这样的数对共有多少个?【解析】在这些数对中,被减数最大是9999,此

22、时减数是999989211078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。为了保证减数是四位数,最多可以减去78,因此: 这样的数对共有78+179个。7、要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?【解析】将72分解成两个自然数的乘积,这两个自然数的差最小的是9-8=1,猪圈围墙长9米、宽8米时,围墙总长最少,为8+92=34米。8、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有多少人?【解析】因为参加竞赛的有28+23+20=71人。让

23、这71人尽可能多地重复,712=351; 所以至多有35人参加两科。9、一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的?【解析】假设摸出的8个球全是红球,则数字之和为48=32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故。用一个绿球换一个红球,数字和可增加64=2,用一个黄球换一个红球,数字和可增加5-4=1。为了使红球尽可能地多,应该多用绿球换红球,现在72=31,因此可用3个绿球换红球,再用一个黄

24、球换红球,这样8个球的数字之和正好等于39。所以要使8个球的数字之和为39,其中最多可能有8-3-1=4个是红球。直击赛场 1、第四届希望杯1试一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的多一些,比少一些。按这样的运法,他运完这批货物最少共要运 次,最多共要运 次。【解析】这道题目用到了极值判断法,体会极值判断法:假定5次运的恰好等于,则每一次最少运5=,所以最多运1=9次;假定5次运的恰好等于,则每一次最多运5=,所以最少运1=7次。2、全国第三届“华杯赛”决赛口试试题将1、2、3、4、5、6、7、8这八个数分成三组,分别计算各组数的和。已知这三个和互不相等,且最大的和是最小和的2倍。问:最小的和是多少?【解析】因为1+2+3+8=36,又知三组数的和各不相同,而且最大的和是最小和的2倍。所以,最小和比总和36的要小,而比总和36的要大。因此,最小的和是8。3、全国第四届“华杯赛”决赛第一试试题一组互不相同的自然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论