2022-2023学年山东省潍坊市锦程中学高二数学理测试题含解析_第1页
2022-2023学年山东省潍坊市锦程中学高二数学理测试题含解析_第2页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年山东省潍坊市锦程中学高二数学理测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 数据a1,a2,a3an的方差为2,则数据2a1,2a2,2a32an的方差为()AB2C22D42参考答案:D【考点】极差、方差与标准差【分析】本题是根据一组数据的方差,求和它有关的另一组数据的方差,可以先写出数据a1,a2,a3an的方差为2的表示式,然后再写出数据中每一个数据都乘以2以后的表示式,得到结果【解答】解:2=,=4?=42故选D2. 函数f(x)=x3x21有零点的区间是()A(0,1)B(1,0)C(1

2、,2)D(2,3)参考答案:C【考点】52:函数零点的判定定理【分析】利用零点判定定理转化求解即可【解答】解:函数f(x)=x3x21是连续函数,f(1)=111=10,f(2)=841=30,f(1)f(2)0,所以函数的零点的区间是(1,2)故选:C【点评】本题考查函数的零点判定定理的应用,考查计算能力3. 抛物线y=x2上的点到直线2xy=4的最短距离是()ABCD参考答案:B【考点】直线与圆锥曲线的关系【分析】利用点到直线的距离公式,结合配方法,即可得到结论【解答】解:设抛物线y=x2上的点的坐标为(x,y),则由点到直线的距离公式可得d=抛物线y=x2上的点到直线2xy=4的最短距离

3、是故选B4. 已知函数f(x)=x2sinx,则的大小关系为()ABCD参考答案:D【考点】利用导数研究函数的单调性【分析】求出函数f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数值的大小即可【解答】解:f(x)=x2sinx,f(x)=12cosx,令f(x)0,解得:2kx2k,令f(x)0,解得:2kx2k+,故f(x)在(,)递减,而13log1.2,故f(1)f()f(log31.2),故选:D5. 设线段AB的两个端点A、B分别在x轴、y轴上滑动,且|AB|=4,点M是线段AB的中点,则点M的轨迹方程是()A =1Bx2+y2=4Cx2y2=4D +=1参考答

4、案:B【考点】轨迹方程【专题】直线与圆【分析】可以取AB的中点M,根据三角形ABO是直角三角形,可知OM=2是定值,故M的轨迹是以O为圆心,半径为2的圆问题获解【解答】解:设M(x,y),因为ABC是直角三角形,所以|OM|=定值故M的轨迹为:以O为圆心,2为半径的圆故x2+y2=4即为所求故选B【点评】本题考查了圆的轨迹定义,一般的要先找到动点满足的几何条件,然后结合曲线的轨迹定义去判断即可然后确定方程的参数,写出方程6. 函数y=x2+bx+c在0,+)上是单调函数的充分条件是()Ab1Bb1Cb0Db1参考答案:A【考点】必要条件、充分条件与充要条件的判断【分析】函数y=x2+bx+c在

5、0,+)上是单调函数,可得0,解得b,进而判断出结论【解答】解:函数y=x2+bx+c在0,+)上是单调函数,0,解得b0函数y=x2+bx+c在0,+)上是单调函数的充分条件是b1故选:A7. 小华与另外4名同学进行“手心手背”游戏,规则是:5人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得1分,其余每人得0分.现5人共进行了3次游戏,记小华3次游戏得分之和为X,则EX为( )A B C D参考答案:B设0表示手背,1表示手心,用5为的二进制数表示所有可能的结果,其中第一位表示小华所出的手势,后四位表示其余四人的手势,如下表所示,其中标记颜色的部分为小华获胜的结果.由古典概

6、型计算公式可知,每次比赛小华获胜的概率为,X可能的取值为0,1,2,3,该分布列为超几何分布,则数学期望: .本题选择B选项.8. 已知O、A、B是平面上的三个点,直线AB上有一点C,满足,则( ) A B C D参考答案:B略9. 下图是计算函数y的值的程序框图,在、处应分别填入的是()Ayln(x),y0,y2xByln(x),y2x,y0Cy0,y2x,yln(x)Dy0,yln(x),y2x参考答案:B10. 已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+f(n)不能等于()Af(1)+2f(1)+3f(1)+nf(1)BCn(n+1)Dn(n+1)f(1

7、)参考答案:D【考点】抽象函数及其应用【分析】根据题意,令x=n、y=1,证出f(n+1)f(n)=2,得f(n)构成以2为首项、公差为2的等差数列由等差数列通项公式算出f(n)=2n,进而得到f(n)前n项和等于n(n+1)由此再将各项和运算结果加以对照,可得本题答案【解答】解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2,f(n+1)f(n)=2,可得f(n)构成以f(1)=2为首项,公差为2的等差数列,f(n)=2+(n1)2=2n,因此,f(1)+f(2)+f(n)=n(n+1)对于A,由于f(1)+2f(1)+3f(1)+nf(1)=f(1)(1+2+n)=2=

8、n(n+1),故A正确;对于B,由于f(n)=2n,所以=2=n(n+1),得B正确;对于C,与求出的前n项和的通项一模一样,故C正确对于D,由于n(n+1)f(1)=2n(n+1),故D不正确故选:D二、 填空题:本大题共7小题,每小题4分,共28分11. 若函数f(x)=x33x+5a(aR)在上有2个零点,则a的取值范围是参考答案:【考点】6B:利用导数研究函数的单调性【分析】求出函数的导数,得到函数的单调区间,从而求出函数的极值以及端点值,根据函数的零点求出a的范围即可【解答】解:若函数f(x)=x33x+5a,则f(x)=3x23=3(x1)(x+1),令f(x)0,解得:x1或x1

9、,令f(x)0,解得:1x1,故f(x)在(3,1)递增,在(1,1)递减,在(1,)递增,故f(x)极大值=f(1)=7a,f(x)极小值=f(1)=3a,而f(3)=13a,f()=a,故或,解得:a,故答案为:12. 某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x= 吨.参考答案:2013. 如图,直线与圆及抛物线依次交于A、B、C、D四点,则 . 参考答案:14 14. (几何证明选讲选做题)如如图,是的内接三角形,是的切线,交于点,交于点若,则_参考答案:415. 若在区间5,5内任取一个实数a

10、,则使直线x+y+a=0与圆(x1)2+(y+2)2=2有公共点的概率为参考答案:考点: 几何概型专题: 计算题;概率与统计分析: 利用圆心到直线的距离小于等于半径可得到直线与圆有公共点,可求出满足条件的a,最后根据几何概型的概率公式可求出所求解答: 解:直线x+y+a=0与圆(x1)2+(y+2)2=2有公共点,解得1a3,在区间5,5内任取一个实数a,使直线x+y+a=0与圆(x1)2+(y+2)2=2有公共点的概率为=故答案为:点评: 本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题16. 二维空间中圆的一维测度(周长),二维测

11、度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.已知四维空间中“超球”的三维测度,猜想其四维测度_.参考答案:17. 若x,y满足约束条件,则的最大值为参考答案:【考点】简单线性规划【专题】计算题;对应思想;数形结合法;不等式【分析】由约束条件作出可行域,再由的几何意义,即可行域内的动点与定点P(1,0)连线的斜率求得答案【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由的几何意义,即可行域内的动点与定点P(1,0)连线的斜率可得,的最大值为故答案为:【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题三、 解答题:本大题共5

12、小题,共72分。解答应写出文字说明,证明过程或演算步骤18. ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c()求C;()若c=,ABC的面积为,求ABC的周长参考答案:【考点】解三角形【分析】()已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求ABC的周长【解答】解:()已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(

13、A+B)=sinC,sinC0,sin(A+B)=sinCcosC=,又0C,C=;()由余弦定理得7=a2+b22ab?,(a+b)23ab=7,S=absinC=ab=,ab=6,(a+b)218=7,a+b=5,ABC的周长为5+19. 在等比数列中,(1)和公比; (2)前6项的和参考答案:解:(I)在等比数列中,由已知可得: 解得: 或 (II) 当时, 当时,略20. 已知数列的前项和,求.参考答案:略21. 在一次数学考试中,第21题和第22题为选做题,规定每位考生必须且只须在其中选做一题设每位考生选做每一题的可能性均为(1)求甲、乙两名学生选做同一道题的概率;(2)设4名考生中

14、选做第22题的学生个数为,求的概率分布及数学期望参考答案:解:(1)设事件表示“甲选做第21题”,事件表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“”, 2分=.6分(2)随机变量的可能取值为0,1,2,3,4,且, 8分, 10分变量的分布列为:0123412分(或). 14分略22. 过直角坐标平面xOy中的抛物线y2=2px(p0)的焦点F作一条倾斜角为的直线与抛物线相交于A、B两点(1)求直线AB的方程;(2)试用p表示A、B之间的距离;(3)当p=2时,求AOB的余弦值参考公式:(xA2+yA2)(xB2+yB2)=xAxBxAxB+2p(xA+xB)+4p2参考答案:【考点】直线与圆锥曲线的综合问题;直线的一般式方程【专题】计算题【分析】(1)根据所给的抛物线的方程写出抛物线的焦点坐标,又有所给的直线的倾斜角得到这条直线的斜率,由点斜式写出直线的方程,整理成最简形式(2)要求两点之间的距离,首先要把直线与抛物线方程联立,整理出关于x的方程,根据根和系数之间的关系,和抛物线的定义,写出结果(3)根据所给的p的值,写出具体的直线的方程,把直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论