福建省龙岩八中学2023学年数学九年级第一学期期末复习检测试题含解析_第1页
福建省龙岩八中学2023学年数学九年级第一学期期末复习检测试题含解析_第2页
福建省龙岩八中学2023学年数学九年级第一学期期末复习检测试题含解析_第3页
福建省龙岩八中学2023学年数学九年级第一学期期末复习检测试题含解析_第4页
福建省龙岩八中学2023学年数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,二次函数的图象与x轴相交于(2,0)和(4,0)两点,当函数值y0时,自变量x的取值范围是( )Ax2B2x4Cx0Dx42如图,直线l和双曲线y=(k0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分

2、别为C、D、E,连接OA、OB、OP,设AOC的面积为S1、BOD的面积为S2、POE的面积为S3,则( )AS1S2S3BS1S2S3CS1S2S3DS1S2S33若,相似比为1:2,则与的面积的比为( )A1:2B2:1C1:4D4:14如图,EF与AC交于点G,则是相似三角形共有( )A3对B5对C6对D8对5已知二次函数yax2+bx+c的图象如图所示,下列结i论:abc1;b24ac1;2a+b1;ab+c1其中正确的结论有( )A1个B2个C3个D4个6如图,已知A(2,1),现将A点绕原点O逆时针旋转90得到A1,则A1的坐标是()A(1,2)B(2,1)C(1,2)D(2,1)

3、7一元二次方程x2+kx30的一个根是x1,则另一个根是()A3B1C2D38如图,四边形ABCD内接于,如果它的一个外角DCE=64,那么BOD=( )A128B100C64D329如图,点A、B、C、D、O都在方格纸的格点上,若COD是由AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A30B45C90D13510二次函数y=ax2+bx+c(a0)和正比例函数y=x的图象如图所示,则方程ax2+(b)x+c=0(a0)的两根之和( )A大于0B等于0C小于0D不能确定二、填空题(每小题3分,共24分)11若,则x_12如图所示的点阵中,相邻的四个点构成正方形,小球只在矩形内自由滚动时

4、,则小球停留在阴影区域的概率为_.13如图,RtABC中,C=90,ABC=30,AC=2,ABC绕点C顺时针旋转得A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是_14如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x26x16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_15如图,分别以正三角形的 3 个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱 洛三角形若正三角形边长为 3 cm,则该莱洛三角形的周长为_cm16如图,正方形的边长为8,点

5、在上,交于点.若,则长为_17已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为_18(2011南充)如图,PA,PB是O是切线,A,B为切点,AC是O的直径,若BAC=25,则P=_度三、解答题(共66分)19(10分)如图,的顶点是双曲线与直线在第二象限的交点轴于,且(1)求反比例函数的解析式;(2)直线与双曲线交点为、,记的面积为,的面积为,求20(6分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中的值是_;(2)被查的200名生中最喜欢球运动的学生有

6、_人;(3)若由3名最喜欢篮球运动的学生(记为),1名最喜欢乒乓球运动的学生(记为),1名最喜欢足球运动的学生(记为)组队外出参加一次联谊活动欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率21(6分)已知:如图,在四边形ABCD中,ABCD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD(1)求证:ACF=ABD;(2)连接EF,求证:EFCG=EGCB22(8分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克(1)求出月销

7、售量y(千克)与销售单价x(元/千克)之间的函数关系式;求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?23(8分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I从三个布袋中各随机取出一个小球求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率24(8

8、分)如图,在矩形 ABCD 中,CEBD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作P,P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K,若 tan KFC 3 ,求 BP;(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究是否为定值,若是求出该值,若不是,请说明理由.25(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;(2

9、)从中任意抽取1个球恰好是红球的概率是 ;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明26(10分)若一条圆弧所在圆半径为9,弧长为,求这条弧所对的圆心角参考答案一、选择题(每小题3分,共30分)1、B【详解】当函数值y0时,自变量x的取值范围是:2x1故选B2、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得OP1M的面积等于S1和S2 ,因此可

10、比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1S2= 设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得 所以S1S2S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.3、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:,相似比为1:2,与的面积的比为1:4.故选C.考点:相似三角形的性质.4、C【分析】根据相似三角形的判定即可判断.【详解】图中三角形有:,共有6个组合分别为:,故选C【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.5、C【分析】首先根据开口方向

11、确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b24ac的取值范围,根据x1函数值可以判断【详解】解:抛物线开口向下,对称轴,抛物线与轴的交点在轴的上方,故错误;抛物线与轴有两个交点,故正确;对称轴,故正确;根据图象可知,当时,故正确;故选:【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键6、A【解析】根据点(x,y)绕原点逆时针旋转90得到的坐标为(-y,x)解答即可【详解】已知A(2,1),现将A点绕原点O逆时针旋转90得到

12、A1,所以A1的坐标为(1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.7、A【分析】根据一元二次方程根与系数的关系 即可得出答案【详解】由根与系数的关系得故选:A【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键8、A【详解】四边形ABCD内接于O,A=DCE=64,BOD=2A=128.故选A.9、C【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,OC2+AO2=16,AC2=42=16,AOC是直角三角形,AOC=90故选C【点睛】考点:勾股定理逆定理.10、A【解析】试题分析:

13、设ax2+bx+c=1(a1)的两根为x1,x2,由二次函数的图象可知x1+x21,a1,设方程ax2+(b)x+c=1(a1)的两根为a,b再根据根与系数的关系即可得出结论设ax2+bx+c=1(a1)的两根为x1,x2, 由二次函数的图象可知x1+x21,a1, 1设方程ax2+(b)x+c=1(a1)的两根为a,b,则a+b=+, a1, 1,a+b1考点:抛物线与x轴的交点二、填空题(每小题3分,共24分)11、【分析】用直接开平方法解方程即可.【详解】,故答案为:.【点睛】此题考查一元二次方程的解法,依据方程的特点选择恰当的方法.12、【分析】分别求出矩形ABCD的面积和阴影部分的面

14、积即可确定概率.【详解】设每相邻两个点之间的距离为a则矩形ABCD的面积为 而利用梯形的面积公式和图形的对称性可知阴影部分的面积为 小球停留在阴影区域的概率为 故答案为【点睛】本题主要考查随机事件的概率,能够求出阴影部分的面积是解题的关键.13、【解析】试题分析:ACB=90,ABC=30,AC=2,A=90ABC=60,AB=4,BC=2,CA=CA1,ACA1是等边三角形,AA1=AC=BA1=2,BCB1=ACA1=60,CB=CB1,BCB1是等边三角形,BB1=2,BA1=2,A1BB1=90,BD=DB1=,A1D=考点:旋转的性质14、1【解析】抛物线的解析式为y=x2-6x-1

15、6,可以求出AB=10;在RtCOM中可以求出CO=4;则:CD=CO+OD=4+16=1【详解】抛物线的解析式为y=x2-6x-16,则D(0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-=3,即M(3,0),则A(-2,0)、B(8,0),则AB=10,圆的半径为AB=5,在RtCOM中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=1故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理15、【分析】直接利用弧长公式计算即可【详解】解:该莱洛三角形的周长=3.故答案为:.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),

16、也考查了等边三角形的性质16、6【分析】根据正方形的性质可得OCAB,OB=,从而证出COQPBQ,然后根据相似三角形的性质即可求出,从而求出的长【详解】解:正方形的边长为8,OCAB,OB=COQPBQ故答案为:6【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键17、(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答【详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为故答案为【点

17、睛】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键18、50【解析】PA,PB是O是切线,A,B为切点,PA=PB,OBP=90,OA=OB,OBA=BAC=25,ABP=9025=65,PA=PB,BAP=ABP=65,P=1806565=50,故答案为:50三、解答题(共66分)19、(1);(2)【分析】(1)由可得,再根据函数图像可得,即可得到函数解析式.(2)先求得一次函数解析式,再联立方程组求得点A和点C的坐标,记直线与轴的交点为,求得点坐标为,即可求得.【详解】解:(1),双曲线在二、四象限反比例函数的解析式为(2)由(1)可得,

18、代入可得一次函数的解析式为,联立方程组,得,易求得点为,点为记直线与轴的交点为,在中,当y=0,则x=2,点坐标为,【点睛】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积20、(1)35;(2)190;(3)所有可能的情况见解析,【分析】(1)考查了扇形图的性质,根据所有小扇形的百分数和为即可得;(2)根据扇形图求出最喜欢球运动的学生人数对应的百分比,从而即可得;(3)先列出所有可能的结果,再找出2人均为最喜欢篮球运动的学生的结果,最后利用概率公式求解即可【详解】(1)由题得:解得:故答案为:35;(2)最喜欢球运动的学生人数为(人)

19、故答案为:190;(3)用表示3名最喜欢篮球运动的学生,B表示1名最喜欢乒乓球运动的学生,C表示1名喜欢足球运动的学生,则从5人中选出2人的所有可能的情况10种,即有,它们每一种出现的可能性相等选出的2人均是最喜欢篮球运动的学生的情况有3种,即则选出2人均是最喜欢篮球运动的学生的概率为【点睛】本题考查了扇形统计图的概念及性质、利用列举法求概率,较难的是(3),依据题意,正确列出事件的所有可能的结果是解题关键21、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)先根据CG2=GEGD得出,再由CGD=EGC可知GCDGEC,GDC=GCE根据ABCD得出ABD=BDC,故可得出结论;(

20、2)先根据ABD=ACF,BGF=CGE得出BGFCGE,故再由FGE=BGC得出FGEBGC,进而可得出结论试题解析:(1)CG2=GEGD,又CGD=EGC,GCDGEC,GDC=GCEABCD,ABD=BDC,ACF=ABD(2)ABD=ACF,BGF=CGE,BGFCGE,又FGE=BGC,FGEBGC,FECG=EGCB考点:相似三角形的判定与性质22、(1)y10 x+1000;w10 x2+1400 x40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以

21、得到月销售利润w(单位:元) 与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题【详解】解:(1)由题意可得:y500(x50)1010 x+1000;w(x40)10 x+100010 x2+1400 x40000;(2)设销售单价为a元,解得,a80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)y10 x2+1400 x4000010(x70)2+9000,当x70时,y取得最大值,此时y9000,答:当售价定为70元时会获得最

22、大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键23、(1);(2)【分析】(1)根据题意画出树状图,根据树状图作答即可;(2)根据树状图作答即可【详解】解:(1)画树状图得:共有12种等可能的结果,取出的3个小球上恰好有2个元音字母的为4种情况,P(恰好有2个元音字母);(2)取出的3个小球上全是辅音字母的有2种情况,取出的3个小球上全是辅音字母的概率是:【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键24、(1);(2)BP=1;(3)【分析】(1)当点G和点E重合,当点G和点D重合两种临界状态,分别求出BP的值,因为任意点都不重合,所以BP在两者之间即可得出答案;(2)KFC和BFE是对顶角,得到,得出EF的值,再根据BEFFEG,求出EG的值,进而可求出BP的值;(3)设圆的半径,利用三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论