版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1的值等于( )ABCD12下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()ABCD3九章算术总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响. 在九章算术中有很多名题,下面就是
2、其中的一道. 原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点. 寸,寸,则可得直径的长为( )A13寸B26寸C18寸D24寸4如图,点C、D在圆O上,AB是直径,BOC=110,ADOC,则AOD=( )A70B60C50D405如图,在ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,DAE20,则BAC的度数为()A70B80C90D1006如图,ABC的顶点在网格的格点上,则tanA的值为()ABCD7下列运算正确的是( )A2B(2)26CD8如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,A
3、n分别是正方形的中心,则这n个正方形重叠的面积之和是( )AnBn-1C4nD4(n-1)9如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是ABCD10如图,点A、B、C在上,A=72,则OBC的度数是( )A12B15C18D2011某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A16(1+x2)36B16x+16x(x+1)36C16(1+x)+16(1+x)236D16x(x+1)3612如图,将ABC绕点A顺时针旋转 60得到AED,若线段AB=3,则BE=()A2B3C4D5二、填空题(每
4、题4分,共24分)13已知抛物线,过点(0,2),则c_14如图,RtABC中,A90,CD平分ACB交AB于点D,O是BC上一点,经过C、D两点的O分别交AC、BC于点E、F,AD,ADC60,则劣弧的长为_15扇形的弧长为10cm,面积为120cm2,则扇形的半径为_cm16如图,点、在上,点在轴的正半轴上,点是上第一象限内的一点,若,则圆心的坐标为_17如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为_米(保留根号)18已知y是x的二次函数, y与x的部分对应值如下表:x.1012.y.0343.该二次函数图象向左平移_个单位,图象经过原点三、解答题(共78分)19(8分
5、)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30方向上(1)求APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?20(8分)如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动(1)如果,求点运动的时间;(2)如果点是延长线上的一点,那么当点运动的时间为时,判断直线与的位置关系,并说明理由21(8分)已知y是x的反比例函数,且当时,(1)求y关于x
6、的函数解析式;(2)当时,求y的值22(10分)如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BCOM AD,ONBC,垂足分别为M、N.连接PM、PN.图1 图2(1)求证:ADP CBP;(2)当ABCD时,探究PMO与PNO的数量关系,并说明理由;(3)当ABCD时,如图2,AD=8,BC=6, MON=120,求四边形PMON的面积.23(10分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.24(10分)如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为.(1)求证:; (2)求证:为的切线.25(12分
7、)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(1,0),B(3,0)两点,与y轴相交于点C(0,3)(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PHx轴于点H,与BC交于点M,连接PC求线段PM的最大值;当PCM是以PM为一腰的等腰三角形时,求点P的坐标26如图,在矩形ABCD中,AB6,AD3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DPt,EQ2t(1)当点P在线段DE上(不包括端点)时求证:APPQ;当AP平分DPB时,求PBQ的面积(2)在点P,Q的运动过程中,是否存在这样的t,使得PB
8、Q为等腰三角形?若存在,请求出t的值;若不存在,试说明理由参考答案一、选择题(每题4分,共48分)1、C【分析】根据特殊三角函数值来计算即可.【详解】故选:C.【点睛】本题考查特殊三角函数值,熟记特殊三角函数值是解题的关键.2、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义3、B【分
9、析】根据垂径定理可知AE的长在RtAOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长【详解】连接OA,由垂径定理可知,点E是弦AB的中点, 设半径为r,由勾股定理得, 即 解得:r=13所以CD=2r=26,即圆的直径为26,故选B【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.4、D【分析】根据平角的定义求得AOC的度数,再根据平行线的性质及三角形内角和定理即可求得AOD的度数【详解】BOC110,BOCAOC180AOC70ADOC,ODOADA70AOD1802A40故选:D【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性
10、质及三角形内角和定理的运用5、D【分析】先根据垂直平分线的特点得出B=DAB,C=EAC,然后根据ABC的内角和及DAE的大小,可推导出DAB+EAC的大小,从而得出BAC的大小【详解】如下图DM是线段AB的垂直平分线,DADB,BDAB,同理CEAC,B+DAB+C+EAC+DAE180,DAE=20DAB+EAC80,BAC100,故选:D【点睛】本题考查垂直平分线的性质,解题关键是利用整体思想,得出DAB+EAC806、A【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案【详解】解:如图作CDAB于D,CD=,AD=2,tanA=,故选A.【点睛】本题考查锐角三角函
11、数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边7、D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可【详解】A:2,故本选项错误;B:(2)212,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确,故选D【点睛】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.8、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和【详解】解:如图示,由分别过点A1、A2、A
12、3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的,即阴影部分的面积是,n个这样的正方形重叠部分(阴影部分)的面积和为:故选:B【点睛】此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积9、A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体故选A10、C【分析】根据圆周角定理可得BOC的度数,根据等腰三角形的性质即可得答案.【详解】点A、B、C在上,A=72,BOC=2A
13、=144,OB=OC,OBC=OCB=(180-BOC)=18,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.11、A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解【详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x)21故选:A【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键12、B【解析】分析:根据旋转的性质得出BAE=60,AB=AE,得出BA
14、E是等边三角形,进而得出BE=1即可详解:将ABC绕点A顺时针旋转60得到AED,BAE=60,AB=AE,BAE是等边三角形,BE=1故选B点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变要注意旋转的三要素:定点-旋转中心;旋转方向;旋转角度二、填空题(每题4分,共24分)13、2【分析】将点(0,2)代入原解析式解出c的值即可.【详解】抛物线,过点(0,2),c=2,故答案为:2.【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键.14、【分析】连接DF,OD,根据圆周角定理得到CDF90,根据三角形的内角和得到COD120,
15、根据三角函数的定义得到CF4,根据弧长公式即可得到结论【详解】解:如图,连接DF,OD,CF是O的直径,CDF90,ADC60,A90,ACD30,CD平分ACB交AB于点D,DCF30,OCOD,OCDODC30,COD120,在RtCAD中,CD2AD2,在RtFCD中,CF4,O的半径2,劣弧的长,故答案为【点睛】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键15、1【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形,把对应的数值代入即可求得半径r的长【详解】解:S扇形,故答案为1【点睛】本题考查了扇形面积和弧长公式之间的关系,解此类题目的关
16、键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:S扇形16、【分析】分别过点B,C作x轴的垂线,垂足分别为E,F,先通过圆周角定理可得出BAC=90,再证明BEAAFC,得出AE=CF=4,再根据AO=AE-OE可得出结果【详解】解:分别过点B,C作x轴的垂线,垂足分别为E,F,D=45,BAC=90BAE+ABE=90,BAE+CAF=90,ABE=CAF,又AB=AC,AEB=AFC=90,BEAAFC(AAS),AE=CF,又B,C的坐标为、,OE=1,CF=4,OA=AE-OE=CF-OE=1点A的坐标为(1,0)故答案为:(1,0)【点睛】本题主要考查圆周角定理,以及全等三角形
17、的判定与性质,根据已知条件作辅助线构造出全等三角形是解题的关键17、【分析】由题意可知斜面坡度为1:2,BC=6m,由此求得AC=12m,再由勾股定理求得AB的长即可.【详解】由题意可知:斜面坡度为1:2,BC=6m,AC=12m,由勾股定理可得,AB= m故答案为6m【点睛】本题考查了解直角三角形的应用,根据坡度构造直角三角形是解决问题的关键18、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论【详解】解:由表格得:二次函数的对称轴是直线x=1抛物线与x轴的一个交点为(-1,0),抛物线与x轴另一个交点为(2,0),该二次函数图象向左平移2个单位,图象经过原点;或
18、该二次函数图象向右平移1个单位,图象经过原点故填为2【点睛】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决三、解答题(共78分)19、(1)30;(2)海监船继续向正东方向航行是安全的【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30,ABP=120APB=180-30-120=30(2)过点P作PHAB于点H 在RtAPH中,PAH=30,AH=PH在RtBPH中,PBH=30,BH=PHAB=AH-BH=P
19、H=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形20、(1)或(2)直线与相切,理由见解析【分析】(1)当POA=90时,点P运动的路程为O周长的或,所以分两种情况进行分析;(2)直线BP与O的位置关系是相切,根据已知可证得OPBP,即直线BP与O相切【详解】解:(1)当POA=90时,根据弧长公式可知点P运动的路程为O周长的或,设点P运动的时间为ts;当点P运动的路程为O周长的时,2t=212,解得t=3;当点P运动的路程为O周长的时,2t=212,解得t=9;当POA=90时,点P运动的时间为3s或9s(2)如图,当点P运动的时间为2s时,直线BP与O相
20、切理由如下:当点P运动的时间为2s时,点P运动的路程为4cm,连接OP,PA;半径AO=12cm,O的周长为24cm,的长为O周长的,POA=60;OP=OA,OAP是等边三角形,OP=OA=AP,OAP=60;AB=OA,AP=AB,OAP=APB+B,APB=B=30,OPB=OPA+APB=90,OPBP,直线BP与O相切【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可21、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用x=1代入求出答案【详解】解:(1)y是x的反比例函数,设
21、y=,当x=-2时,y=8,k=(-2)8=-16,y=;(2)当x=1时,代入,y=-161=-1【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键22、(1)证明见解析;(2)PMO=PNO,理由见解析;(3)S平行四边形PMON=6【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM AD,ONBC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得QBC=90,进而证明QCB=PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以A=C, D=B,所以ADPCB
22、P. (2)PMO=PNO因为OM AD,ONBC,所以点M、N为AB、CD的中点,又ABCD,所以PM=AD,PN=BC,所以,A=APM,C=CPN,所以AMP=CNP,得到PMO与PNO. (3)连接CO并延长交圆O于点Q,连接BD.因为ABCD,AM=AD,CN=BC,所以PM=AD,PN=BC.由三角形中位线性质得,ON=.因为CQ为圆O直径,所以QBC=90,则Q+QCB=90,由DPB=90,得PDB+PBD=90,而PDB=Q,所以QCB=PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形.S平行四边形PMON=6【点睛】本题考查了相似
23、三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键.23、,【分析】把点A(3,k-2)代入,即可得出k2,据此求出k的值,再根据正比例函数y的值随x的值增大而减小,得出满足条件的k值即可求解【详解】根据题意可得k2,整理得k2-2k+3=0,解得k1=-1,k2=3,正比例函数y的值随x的值增大而减小,k=-1,点A的坐标为(3,-3),反比例函数是解析式为:y;正比例函数的解析式为:y=-x【点睛】此题考查反比例
24、函数与一次函数的交点问题,解题关键在于将函数图象的交点与方程(组)的解结合起来是解此类题目常用的方法24、(1)见解析;(2)见解析【分析】(1)连接AD,则ADBC,再由已知,可推出是的垂直平分线 ,再根据垂直平分线的性质即可得出结论(2)连接OD,证明ODDE即可根据三角形中位线定理和平行线的性质可以证明【详解】解:(1)证明:连接是的直径 又 是的垂直平分线 (2)连接 点、分别是的中点 又 为的切线;【点睛】本题考查了直径所对的圆周角是直角,垂直平分线的性质,切线的判定等,准确作出辅助线是解题的关键.25、(1)二次函数的表达式y=x22x3;(2)PM最大=;P(2,3)或(3-,2
25、4)【分析】(1)根据待定系数法,可得答案;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据等腰三角形的定义,可得方程,根据解方程,可得答案【详解】(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x22x3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析式为y=x3,设M(n,n3),P(n,n22n3),PM=(n3)(n22n3)=n2+3n=(n)2+,当n=时,PM最大=;当PM=PC时,(n2+3n)2=n2+(n22n3+3)2,解得n1=0(不符合题意,舍),n2=2,n22n3=-3,P(2,-3);当PM=MC时,(n2+3n)2=n2+(n3+3)2,解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,n22n3=2-4,P(3-,2-4);综上所述:P(2,3)或(3-,24)【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.26、(1)见解析;SPBQ1893;(2)存在,满足条件的t的值为613或13或6+13【解析】(1)如图1中,过点Q作QFCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖北宜昌市宜都市清泉农村供水有限公司招聘专业技术人员5人备考题库及一套参考答案详解
- 实验室消毒制度范文
- 2026年三级人力资源管理师考试题及答案
- 【2025年】陕西省公务员行测附完整答案详解
- 宅基地使用权流转合同
- 2026年市政工程施工合同(道路绿化·验收版)
- 2026年广告位租赁协议(户外室内·引流版)
- 施工过程中的安全控制方法和措施
- 建筑工程资料编号、分类、归档
- 存货管理制度范本
- 2025至2030中国医疗收入周期管理软件行业深度研究及发展前景投资评估分析
- 基层医疗资源下沉的实践困境与解决路径实践研究
- 1101无菌检查法:2020年版 VS 2025年版对比表
- 医务科副科长医务人员调配工作方案
- 碳化硅性能参数及市场趋势分析
- 魔芋干货购销合同范本
- 2025初一英语阅读理解100篇
- 2025年道路运输安全员两类人员试题库及答案
- 保密协议书 部队
- 钢结构工程变更管理方案
- 办美国签证邀请函
评论
0/150
提交评论