2022-2023学年四川省广安市岳池县八年级数学第一学期期末预测试题含解析_第1页
2022-2023学年四川省广安市岳池县八年级数学第一学期期末预测试题含解析_第2页
2022-2023学年四川省广安市岳池县八年级数学第一学期期末预测试题含解析_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数有()A.1个 B.2个 C.3个 D.0个2.如图,中的周长为.把的边对折,使顶点和点重合,折痕交于,交于,连接,若,则的周长为__________;A.. B.. C.. D..3.下列各式由左边到右边的变形中,是分解因式的是A. B.C. D.4.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①② B.①②③ C.①③ D.②③5.已知,如图,D、B、C、E四点共线,∠ABD+∠ACE=230°,则∠A的度数为()A.50° B.60° C.70° D.80°6.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.7.如图,直线y=x+b与直线y=kx+6交于点P(1,3),则关于x的不等式x+b>kx+6的解集是()A. B. C. D.8.下列各数中,属于无理数的是()A. B.1.414 C. D.9.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)10.如图,已知:,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,若,则的边长为()A.6 B.12 C.16 D.3211.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个12.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况二、填空题(每题4分,共24分)13.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面.那么乘游艇游点C出发,行进速度为每小时11千米,到达对岸AD最少要用小时.14.如图,在△ABC中,AB和AC的垂直平分线分别交BC于E、F,若∠BAC=130°,则∠EAF=________.15.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=4.6,则D到AB的距离为.16.如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成_______________个三角形.17.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_____°.18.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.三、解答题(共78分)19.(8分)在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线且和直角三角形,,,.操作发现:(1)在如图1中,,求的度数;(2)如图2,创新小组的同学把直线向上平移,并把的位置改变,发现,说明理由;实践探究:(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分,此时发现与又存在新的数量关系,请直接写出与的数量关系.20.(8分)先化简代数式:,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.21.(8分)解分式方程:.22.(10分)如图,在中,,,于,于,交于.(1)求证:;(2)如图1,连结,问是否为的平分线?请说明理由.(3)如图2,为的中点,连结交于,用等式表示与的数量关系?并给出证明.23.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为km;D点的坐标为;(2)求线段BC的函数关系式,并写出自变量x的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?24.(10分)太原市积极开展“举全市之力,创建文明城市”活动,为年进人全国文明城市行列莫定基础.某小区物业对面积为平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化平方米,乙园林队每天绿化平方米,两队共用天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.25.(12分)解分式方程:(1);(2)26.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(1)若∠BAC=90°,求证:BF1+CD1=FD1.

参考答案一、选择题(每题4分,共48分)1、B【分析】在△ABC和△ADC中,有公共边AC,所以挑两个条件,看这两个三角形是否全等,再得出结论.【详解】∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选B.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.2、A【分析】由折叠可知DE是线段AC的垂直平分线,利用线段垂直平分线的性质可得结论.【详解】解:由题意得DE垂直平分线段AC,中的周长为所以的周长为22.故答案为:22.【点睛】本题考查了线段垂直平分线的性质,灵活利用线段垂直平分线上的点到线段两端的距离相等这一性质是解题的关键.3、C【解析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:A、是多项式乘法,不是分解因式,故本选项错误;

B、是提公因式法,不是分解因式,故本选项错误;

C、右边是积的形式,故本选项正确.D、没有把一个多项式化为几个整式的积的形式,错误.

故选:C.【点睛】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.4、B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB,∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC,OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质5、A【解析】由∠ABD+∠ACE=230°,得出∠ABC+∠ACB=130°,在△ABC中,利用内角和等于180°即可.【详解】∵∠ABD+∠ACE=230°∴∠ABC+∠ACB=130°∴在△ABC中,∠ABC+∠ACB+∠A=180°,即∠A=50°.故答案选:A.【点睛】本题考查的知识点是三角形内角和,解题的关键是熟练的掌握三角形内角和.6、D【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.7、B【分析】观察函数图象得到x>1时,函数y=x+b的图象都在y=kx+6上方,所以关于x的不等式x+b>kx+6的解集为x>1.【详解】当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1,故答案为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.是有理数,错误B.1.414是有限小数,是有理数,错误C.是无限不循环小数,是无理数,正确D.=2是整数,错误故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.9、B【分析】平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10、C【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=,得出△A1B1A2的边长为,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.【详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=,

∴△A1B1A2的边长为,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=+=1,

∴△A2B2A3的边长为1,

同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.11、B【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【详解】解:∵∠1=∠2,

∴∠CAB=∠DAE,

∵AC=AD,

∴当AB=AE时,可根据“SAS”判断△ABC≌△AED;

当BC=ED时,不能判断△ABC≌△AED;

当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;

当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.

故选:B.【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.12、A【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,【详解】解:从图中可以看出各项消费金额占消费总金额的百分比.故选A.二、填空题(每题4分,共24分)13、0.1【分析】连接AC,在直角△ABC中,已知AB,BC可以求AC,根据AC,CD,AD的长度符合勾股定理确定AC⊥CD,则可计算△ACD的面积,又因为△ACD的面积可以根据AD边和AD边上的高求得,故根据△ACD的面积可以求得C到AD的最短距离,即△ACD中AD边上的高.【详解】解:连接AC,在直角△ABC中,AB=3km,BC=1km,则AC==5km,∵CD=12km,AD=13km,故存在AD2=AC2+CD2∴△ACD为直角三角形,且∠ACD=90°,∴△ACD的面积为×AC×CD=30km2,∵AD=13km,∴AD边上的高,即C到AD的最短距离为km,游艇的速度为11km/小时,需要时间为小时=0.1小时.故答案为0.1.点睛:

本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算公式,本题中证明△ACD是直角三角形是解题的关键.14、80°【解析】由在△ABC中,AB和AC的垂直平分线分别交BC于E、F,易得∠B=∠BAE,∠C=∠CAF,又由∠BAC=130°,可求得∠B+∠C的度数,继而求得答案.【详解】∵在△ABC中,AB和AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=130°,∴∠B+∠C=180°-∠BAC=50°,∴∠BAE+∠CAF=50°,∴∠EAF=∠BAC-(∠BAE+∠CAF)=130°-50°=80°.故答案为:80°.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意掌握整体思想的应用是解此题的关键.15、2.1【解析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90°,∠DBC=10°,利用三角形的内角和可得∠A+∠ABD=90°-10°=60°,得到∠ABD=10°,在Rt△BED中根据含10°的直角三角形三边的关系即可得到DE=BD=2.1cm.解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,而∠C=90°,∠DBC=10°,∴∠A+∠ABD=90°-10°=60°,∴∠ABD=10°,在Rt△BED中,∠EBD=10°,BD=4.6cm,∴DE=BD=2.1cm,即D到AB的距离为2.1cm.故答案为2.1.16、1【分析】首先根据多边形内角和公式可得多边形的边数,再计算分成三角形的个数.【详解】解:设此多边形的边数为,由题意得:,

解得;,

从这个多边形的一个顶点引对角线,可以把这个多边形分成的三角形个数:9-2=1,

故答案为:1.【点睛】此题主要考查了多边形的内角,关键是掌握多边形的内角和公式.17、35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,求出∠CAB=∠EAD,待入求出即可.

解:∵△ABC≌△ADE,

∴∠CAB=∠EAD,

∵∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,

∴∠BAD=∠EAC,

∴∠BAD=∠EAC=35°.

故答案为:35.18、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【点睛】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.三、解答题(共78分)19、操作发现:(1);(2)见解析;实践探究:(3).【解析】(1)如图1,根据平角定义先求出∠3的度数,再根据两直线平行,同位角相等即可得;(2)如图2,过点B作BD//a,则有∠2+∠ABD=180°,根据已知条件可得∠ABD=60°-∠1,继而可得∠2+60°-∠1=180°,即可求得结论;(3)∠1=∠2,如图3,过点C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根据平行线的性质可得∠BCD=∠2,继而可求得∠1=∠BAM=60°,再根据∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.【详解】(1)如图1,∵∠BCA=90°,∠1=46°,∴∠3=180°-∠BCA-∠1=44°,∵a//b,∴∠2=∠3=44°;(2)理由如下:如图2,过点B作BD//a,∴∠2+∠ABD=180°,∵a//b,∴b//BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:如图3,过点C作CD//a,∵AC平分∠BAM,∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,∵CD//a,∴∠BCD=∠2,∵a//b,∴∠1=∠BAM=60°,b//CD,∴∠DCA=∠CAM=30°,∵∠BCD=∠BCA-∠DCA,∴∠BCD=90°-30°=60°,∴∠2=60°,∴∠1=∠2.【点睛】本题考查了平行线的判定与性质,三角板的知识,正确添加辅助线,熟练掌握平行线的判定与性质是解题的关键.20、;【解析】试题分析:本题考查了分式的化简求值,原式第二项约分后,两项通分并利用同分母分式的加法法则计算得到最简结果,把x=0代入计算即可求出值.解:原式=+===,当x=0时,原式=.21、原方程的解为【分析】根据解分式方程的步骤:去分母、解整式方程、验根、写结论解答即可.【详解】去分母得:去括号得:解得:经检验是原方程的解所以原方程的解为.【点睛】本题考查解分式方程,掌握解分式方程的步骤是基础,去分母时确定最简公分母是关键,注意不要漏乘.22、(1)证明见解析;(2)是的平分线,理由见解析;(3),证明过程见解析.【分析】(1)先根据等腰三角形的性质、三角形的内角和定理可求出,再根据三角形全等的判定定理与性质即可得证;(2)如图1(见解析),过点D分别作,由题(1)两个三角形全等可得,再根据三角形全等的判定定理与性质,最后根据角平分线的判定即可得出结论;(3)如图2(见解析),连接BR,先根据等腰三角形的性质、垂直平分线的性质可得,从而可求得,再根据勾股定理可得,最后根据等腰三角形的性质、等量代换即可得出答案.【详解】(1)是等腰直角三角形,且(等腰三角形的三线合一性)在等腰中,在和中,;(2)是的平分线,理由如下:如图1,过点D分别作,则由(1)已证:,即在和中,是的平分线;(3),证明过程如下:如图2,连接BR由(1)已证:是等腰直角三角形,为底边的中点(等腰三角形的三线合一性)是AB的垂直平分线则在中,故.

【点睛】本题考查了等腰三角形的判定与性质、三角形全等的判定定理与性质、角平分线的判定等知识点,较难的是题(2),通过作辅助线,构造两个全等的三角形是解题关键.23、(1)1200,D(11,1200);(2)y=240x-1200(1≤x≤7.1);(3)2.71小时.【解析】(1)由题意直接根据图象即可得出答案;(2)设慢车速度为a千米/小时,快车速度为2a千米/小时,根据题意建立方程并求解,再设BC的表达式为y=kx+b,利用待定系数法即可求出BC的表达式,注意写出自变量x的取值范围;(3)根据题意分别求出慢车行驶了1.1小时被第二辆快车追上,此时慢车行驶的路程以及第二辆快车行驶的路程也是440千米,第二辆快车追上慢车所需时间从而进行分析.【详解】解:(1)根据图象可知甲、乙两地之间的距离为1200km,D的坐标为(11,1200);(2)设慢车速度为a千米/小时,快车速度为2a千米/小时,根据题意得:1(a+2a)=1200解得:a=80,2a=160,因此慢车速度为80千米/小时,快车速度为160千米/小时.1200÷160=7.1快车7.1小时到达乙地.此时慢车与快车的距离为:7.1×80=600,C点坐标为(7.1,600)设BC的表达式为y=kx+b,那么,解得,∴BC的表达式为:y=240x-1200(1≤x≤7.1);(3)根据题意:慢车行驶了1.1小时被第二辆快车追上,此时慢车行驶的路程80×1.1=440,第二辆快车行驶的路程也是440千米,第二辆快车追上慢车所需时间为:440÷160=2.71,1.1-2.7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论