2023届四川省都江堰市初八年级数学第一学期期末综合测试模拟试题含解析_第1页
2023届四川省都江堰市初八年级数学第一学期期末综合测试模拟试题含解析_第2页
2023届四川省都江堰市初八年级数学第一学期期末综合测试模拟试题含解析_第3页
2023届四川省都江堰市初八年级数学第一学期期末综合测试模拟试题含解析_第4页
2023届四川省都江堰市初八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在四边形中,,在上分别找到点M,N,当的周长最小时,的度数为()A.118° B.121° C.120° D.90°2.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.-2 C.-1 D.23.下面4组数值中,二元一次方程2x+y=10的解是()A. B. C. D.4.下列各数是有理数的是()A. B. C. D.π5.如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个 B.4个 C.6个 D.8个6.把分解因式,结果正确的是()A. B.C. D.7.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.58.关于的方程的两个解为;的两个解为;的两个解为,则关于的方程的两个解为()A. B.C. D.9.相距千米的两个港口、分别位于河的上游和下游,货船在静水中的速度为千米/时,水流的速度为千米/时,一艘货船从港口出发,在两港之间不停顿地往返一次所需的时间是()A.小时 B.小时 C.小时 D.小时10.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是11.下列各式没有意义的是()A. B. C. D.12.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是(

).A.45° B.60° C.75° D.85°二、填空题(每题4分,共24分)13.等腰三角形的一个外角度数为100°,则顶角度数为_____.14.如果方程有增根,那么______.15.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.16.如图,已知,要使,还需添加一个条件,则可以添加的条件是.(只写一个即可,不需要添加辅助线)17.化简:_________.18.化简的结果为__.三、解答题(共78分)19.(8分)如图,在中,,点是边上一点(不与重合),以为边在的右侧作,使,,连接,设,.(1)求证:;(2)探究:当点在边上移动时,之间有怎样的数量关系?请说明理由.20.(8分)如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=1.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)若S△BOP=S△DOP,求直线BD的解析式.21.(8分)“黄金8号”玉米种子的价格5元/kg,如果一次购买10kg以上的种子,超过10kg部分的种子价格打8折.(1)购买8kg种子需付款元;购买13kg种子需付款元.(2)设购买种子x(x>10)kg,付款金额为y元,写出y与x之间的函数关系式.(3)张大爷第一次买了6kg种子,第二次买了9kg种子.如果张大爷一次性购买种子,会少花多少钱?22.(10分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,(1)画出一次函数y2=x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是______.23.(10分)如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.24.(10分)鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.(1)求鼎丰超市11月份这种保温杯的售价是多少元?(2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?25.(12分)如图,和是等腰直角三角形,,,,点在的内部,且.图1备用图备用图(1)猜想线段和线段的数量关系,并证明你的猜想;(2)求的度数;(3)设,请直接写出为多少度时,是等腰三角形.26.化简:然后选择你喜欢且符合题意的一个的值代入求值.分解因式:

参考答案一、选择题(每题4分,共48分)1、A【分析】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.根据,得出.根据,,且,,可得,即可求出答案.【详解】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.∵,∴.∵,,且,,∴.故选:A.【点睛】本题考查两角度数和的求法,考查三角形性质的应用,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.2、C【解析】试题分析:依据多项式乘以多项式的法则,进行计算(x+2)(x-1)=+x﹣2=+mx+n,然后对照各项的系数即可求出m=1,n=﹣2,所以m+n=1﹣2=﹣1.故选C考点:多项式乘多项式3、D【分析】把各项中x与y的值代入方程检验即可.【详解】A.把代入方程得:左边=﹣4+6=2,右边=1.∵左边≠右边,∴不是方程的解;B.把代入方程得:左边=4+4=8,右边=1.∵左边≠右边,∴不是方程的解;C.把代入方程得:左边=8+3=11,右边=1.∵左边≠右边,∴不是方程的解;D.把代入方程得:左边=12﹣2=1,右边=1.∵左边=右边,∴是方程的解.故选:D.【点睛】此题考查了解二元一次方程的解,熟练掌握运算法则是解本题的关键.4、A【分析】根据实数的分类即可求解.【详解】有理数为,无理数为,,π.故选:A.【点睛】此题主要考查实数的分类,解题的关键是熟知无理数的定义.5、B【解析】试题分析:观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.根据题意,运用SSS可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点.故选B.考点:本题考查三角形全等的判定方法点评:解答本题的关键是按照顺序分析,要做到不重不漏.6、C【解析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】==,故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.7、A【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得SABC=SABP+SACP,代入数值,解答出即可.【详解】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=1,∴BF=4,∴△ABF中,AF=3,∴,12=×5×(PD+PE)PD+PE=4.1.故选A.【点睛】考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.8、D【分析】根据题意可得:的两个解为,然后把所求的方程变形为:的形式,再根据上述规律求解即可.【详解】解:根据题意,得:的两个解为,∵方程即为:,∴的解为:或,解得:,.故选:D.【点睛】本题考查了分式方程的解法,解题时要注意给出的例子中的方程与解的规律,还要注意套用例子中的规律时,要保证所求方程与例子中的方程的形式一致.9、D【分析】先分别算出顺水和逆水的速度,再根据时间=路程速度,算出往返时间.【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,则顺水速度为,时间为,逆水速度为,时间为,所以往返时间为.故选D【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键.10、C【解析】试题解析:被开方数含分母,不是最简二次根式;被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选C.11、C【解析】A、B、D中被开方数均为非负数,故A、B、D均有意义;C中被开方数﹣3<0,故本选项没有意义.故选C.12、C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.二、填空题(每题4分,共24分)13、或【解析】解:若顶角的外角是,则顶角是.若底角的外角是,则底角是,顶角是.故答案为80°或20°.14、-1【解析】分式方程去分母转化为整式方程,把代入整式方程求出m的值即可.【详解】解:去分母得:,由分式方程有增根,得到,代入整式方程得:,故答案为【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.15、1【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,

∵全班共有50人,

∴90分及90分以上的人数为:50×28%=1(人).

故答案为:1.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.16、可添∠ABD=∠CBD或AD=CD.【分析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.17、1【分析】根据二次根式的性质化简即可求出结果.【详解】解:,故答案为:1.【点睛】本题主要考查了二次根式的性质,熟知是解题的关键.18、x-1【分析】根据分式的混合运算,可先算括号里面的,再把除化为乘法,约分即可.【详解】解:===故答案为:x-1.【点睛】本题考查分式的混合运算,掌握运算法则正确计算是解题关键.三、解答题(共78分)19、(1)见解析;(2),理由见解析【分析】(1)由,得,进而根据SAS证明;(2)由,得,根据三角形内角和定理,即可得到结论.【详解】(1)∵,∴,∴,∵,∴(2)∵,∴∵∴∴∴,∵在中,∴.【点睛】本题主要考查三角形全等的判定和性质定理,掌握SAS证明三角形全等,是解题的关键.20、(1)A(-1,0),m=;(2);(3)【分析】(1)根据三角形面积公式得到×OA•2=1,可计算出OA=1,则A点坐标为(-1,0),再求出直线AC的表达式,令x=2,求出y即可得到m值;

(2)由(1)可得结果;

(3)利用三角形面积公式由S△BOP=S△DOP,PB=PD,即点P为BD的中点,则可确定B点坐标为(4,0),D点坐标为(0,),然后利用待定系数法确定直线BD的解析式.【详解】解:(1)∵S△AOC=1,C(0,2),×OA•2=1,∴OA=1,

∴A点坐标为(-1,0),

设直线AC的表达式为:y=kx+b,则,解得:,∴直线AC的表达式为:,令x=2,则y=,∴m的值为;(2)由(1)可得:∴直线AP的解析式为;(3)∵S△BOP=S△DOP,

∴PB=PD,即点P为BD的中点,

∴B点坐标为(4,0),D点坐标为(0,),设直线BD的解析式为y=sx+t,

把B(4,0),D(0,)代入得,解得:,∴直线BD的解析式为.【点睛】本题考查了待定系数法求一次函数解析式,一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)40,62;(2)y=;(3)5元.【分析】(1)根据题意,可以分别计算出购买3kg和购买6kg种子需要付款的金额;(2)根据题意,可以分别写出0≤x≤5和x>5时对应的函数解析式;(3)先算出张大爷两次购买种子的金额,再算出一次性购买种子需要付款的金额,两次金额相减即可.【详解】解:(1)∵8千克<10千克<13千克,∴购买8kg种子需要付款:5×8=40(元),购买13kg种子需要付款:10×5+(13-10)×5×0.8=62(元),故答案为:40,62;(2)由题意可得,当0≤x≤10时,y=5x,当x>10时,y=10×5+5×0.8(x-10)=4x+10,由上可得,y=;(3)张大爷第一次、第二次购买花的钱总数为6×5+9×5=75(元),张大爷一次性购买种子花的钱为:10×5+(6+9-10)×5×0.8=70(元),少花的钱为:75-70=5(元),答:张大爷一次性购买种子,会少花5元钱.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22、(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【解析】(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.【详解】解:(1)∵y1=x+3,∴当y1=0时,x+3=0,解得x=﹣4,当x=0时,y1=3,∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(1)解方程组,得,则点C坐标为(﹣1,);(3)如果y1>y1,那么x的取值范围是x<﹣1.故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.【点睛】本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.23、(1)A,y轴;B,y=x;(2)y=3x;(3)存在.由于,理由见解析.【解析】(1)由轴对称的性质可得出结论;

(2)连接OD,求出OD=,设点P(,2),PA′=,PC=,CD=1.可得出()2=(2)2+12,解方程可得解x=.求出P点的坐标即可得出答案;

(3)可得出点D关于轴的对称点是D′(2,-1),求出直线PD′的函数表达式为,则答案可求出.【详解】(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,

OP所在的直线是y轴;

当点P在C点时,

∵∠AOC=∠BOC=45°,

∴A′点的位置关系是点B,

OP所在的直线表达式是y=x.

故答案为:A,y轴;B,y=x;

(2)连接OD,

∵正方形AOBC的边长为2,点D是BC的中点,

∴OD=.

由折叠的性质可知,OA′=OA=2,∠OA′D=90°.

∵OA′=OA=OB=2,OD公共,∴(),∴A′D=BD=1.

设点P(,2),则PA′=,PC=,CD=1,

∴,即()2=()2+12,

解得:.

所以P(,2),设OP所在直线的表达式为,将P(,2)代入得:,解得:,

∴OP所在直线的表达式是;

(3)存在.若△DPQ的周长为最小,

即是要PQ+DQ为最小,作点D关于x轴的对称点是D′,连接D′P交x轴于点Q,此时使的周长取得最小值,

∵点D关于x轴的对称点是D′(2,),

∴设直线PD'的解析式为,

解得,

∴直线PD′的函数表达式为.

当时,.

∴点Q的坐标为:(,0).【点睛】本题是一次函数与几何的综合题,考查了轴对称的性质,待定系数法求函数解析式,勾股定理,最短路径,正方形的性质.解题关键是求线段和最小值问题,其基本解决思路是根据对称转化为两点之间的距离的问题.24、(1)18;(2)630【分析】(1)由题意设11月份这种保温杯的售价是x元,依题意列出方程并解出方程即可;(2)根据题意设这种保温杯的售价为y元,并列方程求解进而求出鼎丰超市12月份销售这种保温杯的利润.【详解】解:(1)设11月份这种保温杯的售价是x元,依题意可列方程解得:x=18经检验,x=18是原方程的解,且符合题意答:一鼎丰超市11月份这种保温杯的售价是18元.(2)设这种保温杯的售价为y元,依题意可列方程解得:y=12(18×0.9﹣12)×(100+50)=630(元)答:12月份销售这种保温杯的利润是630元.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论