多元线性回归分析课件_第1页
多元线性回归分析课件_第2页
多元线性回归分析课件_第3页
多元线性回归分析课件_第4页
多元线性回归分析课件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多元线性回归(multiplelinearregression)主要内容第一节:多元线性回归概念及统计描述第二节:多元线性回归假设检验第三节、多元线性回归自变量的筛选第四节:多元线性回归应用第五节:多元线性回归应注意问题第六节:实例分析(SAS)第一节:多元线性回归概念及统计描述概念:用于分析一个连续型因变量与多个自变量之间的线性关系的统计学分析方法。

例:血压值与年龄、性别、劳动强度、饮食习惯、吸烟状况、家族史糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总胆固醇、甘油三脂多元线性回归模型多元线性回归数学模型:相应的由样本估计而得到的回归模型:

其中Ỷ表示Y的总体平均值的估计值,b0为常数项,也称为截距,bi为Xi的偏回归系数,表示当方程中其他自变量不变时,自变量Xi变化一个计量单位,反应变量Y的总体平均值的估计值变化的单位数.标准化偏回归系数因为各自变量都有各自的计量单位以及不同的变异度,所以不能直接用普通偏回归系数的大小来比较方程中各个自变量对反应变量Y的影响大小。需要求出标准化偏回归系数。设:与一般回归系数bi对应的标准化偏回归系数为Bi,则SXi、SY分别为Xi和Y的标准差。多元线性回归分析前体条件——LINE(1)linear:

Y与X1,X2,…,Xm之间具有线性关系。(2)independent:各个体观测值间相互独立。(3)normaldistribution:在一定范围内,对任意一组自变量X1,X2,…,Xm值,Y都服从正态分布。(4)equalvariance:在一定范围内,不同组自变量对应的Y具有相同方差。残差分析通过残差分析可以深入了解实际资料是否符合回归模型假设(如正态、方差齐)多元线性回归决定系数决定系数:回归平方和(SS回)在总平方和(SS总)中比例。R2=SS回/SS总0≤R2≤1,R2接近1,

表示样本数据很好的拟合了所用的线性回归模型。R2反映了线性回归模型能多大程度上解释Y的变异。二、回归系数的假设检验(t检验)在F检验中,如果拒绝H0假设,只能说β1,β2…βp不全为0,还需要进一步检查每个自变量的总体偏回归系数。H0:

βi=0,H1:

βi≠0(i=1,2…p)如果H0成立,认为偏回归系数βi不显著,如果拒绝H0,认为偏回归系数βi显著。第三节、自变量的筛选多元回归分析时收集的某些自变量对因变量无影影响或影响甚微;也不敢保证自变量之间是相互独立的,因而在建立多元线性回归方程时,需要使回归方程尽可能包含对解释因变量有较大贡献的自变量,而把贡献不大的或无贡献以及与其他自变量有密切关系的自变量排除。自变量筛选的标准和原则1、残差平方和(SS残)缩小或决定系数(R2)增大R2=1-SS残/SS总2、残差均方(MS残)缩小或调整决定系数(R2ad)增大MS残=SS残/(n-p-1)3、Cp统计量减小定量的建立一个反应变量和多个自变量之间的线性关系筛选危险因素通过较易测算的变量估计不易测量的变量通过反应变量控制自变量第四节:多元线性回归应用第五节:多元线性回归应注意问题多重共线性除了LINE前提条件外,多元线性回归还需要注意自变量之间的关系。当自变量之间高度相关,则称自变量存在多重共线性。共线性可使回归系数极不稳定,表现为回归系数标准误很大,以至于本来非常重要的自变量无统计意义而不能进入方程,甚至使样本回归系数可大可小,可正可负,专业知识无法进行解释。

最简单的处理办法就是删除变量:在相关性较强的变量中删除测量误差较大的、缺失数据多的,专业角度看不是很重要的,也可采用主成分回归法。交互效应当回归模型中有多于2个的自变量,变量之间可能存在交互作用(一自变量对应变量的作用大小与另一个自变量的取值有关),此时可建立包含各自变量及其某些有交互作用的自变量的乘积(X1X2)的回归模型。

例如:A、B两种药物对帕金森综合症都有作用,而且相信联合用药效果更好,为探讨联合用药可行性,进行了随机对照临床试验。最终的得到的回归方程为:

Ỷ=49-2.5X1+1.9X2+0.2X1X2哑变量设置多元线性回归分析中自变量可以是连续的(年龄、血压),也可以是二分类的(性别),不能把有序变量(高、中、低)和无序多分类变量直接纳入分析。必须先将有序变量或多分类无序变量转换成多个二分类变量,再进行回归分析。

通径分析

当多元回归自变量较多时,相互间的关系十分复杂,有的自变量并不是直接对反应变量产生影响,而是通过对其他自变量的作用间接地影响反应变量。通径分析是一种在回归基础上的拓展,用以处理这种具有复杂变量关系的方法。

例如:回归模型后,自变量X1、X2对Y贡献甚微,但从专业知识考虑X1、X2是通过X3、X4影响Y的,这时就需要通径分析。

步骤:1、根据专业知识绘制变量间的通径图。2、按照通径图建立线性方程。3、将各系数添加到通径图上。4、根据通径图计算各变量对Y的直接、间接效应。第六节:实例分析(SAS)为分析各大学附近房屋价格及其相关因素,统计了近期成交房屋售价和基本情况。试用回归分析方法确定哪些因素对价格有明显影响,并建立模型。占地面积税率教师学生比卧室间数总间数居住面积价格0.857230.76471850152900……………………………………procregdata=house;/*采用reg过程进行多元回归分析*/modelprice

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论