版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.282.如图,在中,,用向量,表示,正确的是A. B.C. D.3.函数的最小值和最大值分别为()A. B. C. D.4.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.645.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.6.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了座城市作实验基地,这座城市共享单车的使用量(单位:人次/天)分别为,,…,,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A.,,…,的标准差 B.,,…,的平均数C.,,…,的最大值 D.,,…,的中位数7.若,且,恒成立,则实数的取值范围是()A. B.C. D.8.下列命题中正确的是()A. B.C. D.9.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.10.已知两条不重合的直线和,两个不重合的平面和,下列四个说法:①若,,,则;②若,,则;③若,,,,则;④若,,,,则.其中所有正确的序号为()A.②④ B.③④ C.④ D.①③二、填空题:本大题共6小题,每小题5分,共30分。11.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)12.若向量与平行.则__.13.在封闭的直三棱柱内有一个表面积为的球,若,则的最大值是_______.14.已知函数,则______.15.设满足约束条件若目标函数的最大值为,则的最小值为_________.16.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求的值.18.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;19.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份
2010
2011
2012
2013
2014
时间代号
1
2
3
4
5
储蓄存款(千亿元)
5
6
7
8
10
(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中20.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.21.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.2、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.3、C【解析】2.∴当时,,当时,,故选C.4、B【解析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.5、C【解析】
如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选C.6、A【解析】
利用方差或标准差表示一组数据的稳定程度可得出选项.【详解】表示一组数据的稳定程度是方差或标准差,标准差越小,数据越稳定故选:A【点睛】本题考查了用样本估计总体,需掌握住数据的稳定程度是用方差或标准差估计的,属于基础题.7、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.8、D【解析】
根据向量的加减法的几何意义以及向量数乘的定义即可判断.【详解】,,,,故选D.【点睛】本题主要考查向量的加减法的几何意义以及向量数乘的定义的应用.9、B【解析】
根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.10、C【解析】
根据线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论,逐项判断出各项的真假,即可求出.【详解】对①,若,,,则或和相交,所以①错误;对②,若,,则或,所以②错误;对③,根据面面平行的判定定理可知,只有,,,,且和相交,则,所以③错误;对④,根据面面垂直的性质定理可知,④正确.故选:C.【点睛】本题主要考查有关线面平行,面面平行,线面垂直,面面垂直的命题的判断,意在考查线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论的理解和应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.12、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【详解】由题意,向量与平行,所以,解得.故答案为.【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.13、【解析】
根据已知可得直三棱柱的内切球半径为,代入球的表面积公式,即可求解.【详解】由题意,因为,所以,可得的内切圆的半径为,又由,故直三棱柱的内切球半径为,所以此时的最大值为.故答案为:.【点睛】本题主要考查了直三棱柱的几何结构特征,以及组合体的性质和球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.14、【解析】
根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.15、【解析】
试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.16、①②【解析】
根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【详解】(1)(2)因为,所以,由于将代入,得【点睛】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.18、(1);(2),乙组加工水平高.【解析】
(1)根据甲、乙两组数据的平均数都是并结合平均数公式可求出、的值;(2)利用方差公式求出甲、乙两组数据的方差,根据方差大小来对甲、乙两组技工的加工水平高低作判断.【详解】(1)由于甲组数据的平均数为,即,解得,同理,,解得;(2)甲组的个数据分别为:、、、、,由方差公式得,乙组的个数据分别为:、、、、,由方差公式得,,因此,乙组技工的技工的加工水平高.【点睛】本题考查茎叶图与平均数、方差的计算,从茎叶图中读取数据时,要注意茎的部分数字为高位,叶子部分的数字为低位,另外,这些数据一般要按照由小到大或者由大到小的顺序排列.19、(Ⅰ),(Ⅱ)千亿元.【解析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下i
1
1
5
1
5
2
2
6
4
12
3
3
7
9
21
4
4
8
16
32
5
5
10
25
50
15
36
55
120
这里又从而.故所求回归方程为.(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为考点:线性回归方程.20、(1);(2)证明见解析.【解析】
(1)由,可得出,两式相减,化简即可得出结果;(2)令代入求出的值,再由求出的值,可验证和时均满足,并假设当时等式成立,利用数学归纳法结合数列的递推公式推导出时等式也成立,综合可得出结论.【详解】(1)对任意的,由可得,上述两式相减得,化简得;(2)①当时,由可得,解得,满足;②当时,由于,则,满足;③假设当时,成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年科研档案保密合同
- 2026年家电维修技术合同
- 房产中介服务合同2026年买卖代理协议
- 2026年家政阿姨兼职合同协议书
- 2026年环保技术合作合同协议
- 汽车修理厂承包合同
- 家用电工技术
- 家用物品安全课件
- 宇通重工安全培训课件
- 安全培训讲师课时费课件
- 2025年统编版语文三年级上册第七、八单元模拟测试卷
- 车厢余煤清扫协议书
- 拆除油罐协议书
- 患者心理护理要点解析
- DB13∕T 6060-2025“一河(湖)一策”方案编制技术导则
- 中国自有品牌发展研究报告2025-2026
- 2025年中职计算机应用(计算机网络基础)试题及答案
- 装配式装修管线分离培训课件
- 2025四川绵阳市江油鸿飞投资(集团)有限公司招聘40人备考题库及答案详解(历年真题)
- 废物转运协议书范本
- 浙江省丽水发展共同体2025-2026学年高二上学期11月期中考试英语试卷
评论
0/150
提交评论