云南省玉溪市通海三中2022-2023学年数学高一第二学期期末考试试题含解析_第1页
云南省玉溪市通海三中2022-2023学年数学高一第二学期期末考试试题含解析_第2页
云南省玉溪市通海三中2022-2023学年数学高一第二学期期末考试试题含解析_第3页
云南省玉溪市通海三中2022-2023学年数学高一第二学期期末考试试题含解析_第4页
云南省玉溪市通海三中2022-2023学年数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.2.方程的解所在的区间为()A. B.C. D.3.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.84.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.5.已知向量满足.为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.6.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.7.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.8.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.09.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元10.已知,与的夹角,则在方向上的投影是()A. B. C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头几盏灯?”则尖头共有__________盏灯.12.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)13.已知函数的部分图象如图所示,则_______.14.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为15.将边长为1的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为______.16.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角对应的边分别是,且.(1)求角;(2)若,求的取值范围.18.已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和为,求.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.20.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π21.已知集合,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】所求的全面积之比为:,故选A.2、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.3、A【解析】

首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.4、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.5、A【解析】

不妨设,由得出点的坐标,根据题意得出曲线表示一个以为圆心,为半径的圆,区域表示以为圆心,内径为,外径为的圆环,再由是两段分离的曲线,结合圆与圆的位置关系得出的取值.【详解】不妨设则,所以,则曲线表示一个以为圆心,为半径的圆因为区域,所以区域表示以为圆心,内径为,外径为的圆环由于是两段分离的曲线,则该两段曲线分别为上图中的要使得是分离的曲线,则所在的圆与圆相交于不同的两点所以,即故选:A【点睛】本题主要考查了集合的应用以及由圆与圆的位置关系确定参数的范围,属于中档题.6、C【解析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题7、B【解析】

设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【点睛】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.8、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.9、C【解析】

计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【点睛】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.10、A【解析】

根据向量投影公式计算即可【详解】在方向上的投影是:故选:A【点睛】本题考查向量投影的概念及计算,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

依题意,这是一个等比数列,公比为2,前7项和为181,由此能求出结果.【详解】依题意,这是一个等比数列,公比为2,前7项和为181,∴181,解得a1=1.故答案为:1.【点睛】本题考查等比数列的首项的求法,考查等比数列的前n项和公式,是基础题.12、①③【解析】

由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.13、【解析】

由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【点睛】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.14、【解析】

试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.15、【解析】

画出几何体示意图,将平移至于直线相交,在三角形中求解角度.【详解】根据题意,过B点作BH//交弧于点H,作图如下:因为BH//,故即为所求异面直线的夹角,在中,,在中,因为,故该三角形为等边三角形,即:,在中,,,且母线BH垂直于底面,故:,又异面直线夹角范围为,故,故答案为:.【点睛】本题考查异面直线的夹角求解,一般解决方法为平移至直线相交,在三角形中求角.16、【解析】

由题意可得:该三棱锥的三条侧棱两两垂直,长都为,所以三棱锥的体积.考点:三棱锥的体积公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)依照条件形式,使用正弦定理化角为边,再用余弦定理求出,从而得出角的值;(2)先利用余弦定理找出的关系,再利用基本不等式放缩,求出的取值范围.【详解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,当且仅当时,等号成立,又,所以.【点睛】本题主要考查利用正余弦定理解三角形,以及利用基本不等式求等式条件下的取值范围问题,第二问也可以采用正弦定理化边为角,利用“同一法”求出的取值范围.18、(1)数列的通项公式为(2)【解析】试题分析:(1)建立方程组;(2)由(1)得:进而由裂项相消法求得.试题解析:(1)设等差数列的公差为,由题意知解得.所以数列的通项公式为(2)∴19、(1)见解析;(2).【解析】

由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.20、(1)g(x)=sin【解析】

(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【详解】(1)f(x)==3(sin2xcos=3由题意得g(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论