2023届吉林省长春市东北师大附中净月校区数学高二第二学期期末学业水平测试试题含解析_第1页
2023届吉林省长春市东北师大附中净月校区数学高二第二学期期末学业水平测试试题含解析_第2页
2023届吉林省长春市东北师大附中净月校区数学高二第二学期期末学业水平测试试题含解析_第3页
2023届吉林省长春市东北师大附中净月校区数学高二第二学期期末学业水平测试试题含解析_第4页
2023届吉林省长春市东北师大附中净月校区数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定积分的值为()A. B. C. D.2.已知复数在复平面内的对应点关于实轴对称,(为虚数单位),则()A. B. C. D.3.使得的展开式中含有常数项的最小的n为()A. B. C. D.4.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个5.用反证法证明:若整系数一元二次方程有有理数根,那么、、中至少有一个偶数时,下列假设正确的是()A.假设、、都是偶数B.假设、、都不是偶数C.假设、、至多有一个偶数D.假设、、至多有两个偶数6.用反证法证明命题“已知,且,则中至少有一个大于”时,假设应为()A.且 B.或C.中至多有一个大于 D.中有一个小于或等于7.设,,则与大小关系为()A. B.C. D.8.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-6≤0x-y+4≥0y≥0A.-∞,-73∪75,+∞9.在极坐标系中,曲线,曲线,若曲线与交于两点,则线段的长度为()A.2 B. C. D.110.数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是A.220 B.440 C.255 D.51011.已知复数,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.在正项等比数列中,则公比______________.14.在的展开式中的常数项为_______.15.如图,已知四面体的棱平面,且,其余的棱长均为2,有一束平行光线垂直于平面,若四面体绕所在直线旋转.且始终在平面的上方,则它在平面内影子面积的最小值为________.16.函数(,均为正数),若在上有最小值10,则在上的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.18.(12分)旅游业作为一个第三产业,时间性和季节性非常强,每年11月份来临,全国各地就相继进入旅游淡季,很多旅游景区就变得门庭冷落.为改变这种局面,某旅游公司借助一自媒体平台做宣传推广,销售特惠旅游产品.该公司统计了活动刚推出一周内产品的销售数量,用表示活动推出的天数,用表示产品的销售数量(单位:百件),统计数据如下表所示.根据以上数据,绘制了如图所示的散点图,根据已有的函数知识,发现样本点分布在某一条指数型函数的周围.为求出该回归方程,相关人员确定的研究方案是:先用其中5个数据建立关于的回归方程,再用剩下的2组数据进行检验.试回答下列问题:(1)现令,若选取的是这5组数据,已知,,请求出关于的线性回归方程(结果保留一位有效数字);(2)若由回归方程得到的估计数据与选出的检验数据的误差均不超过,则认为得到的回归方程是可靠的,试问(1)中所得的回归方程是否可靠?参考公式及数据:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,;;.19.(12分)某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率:(2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t(单位:箱),统计结果如下表所示(视频率为概率):t/箱456频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记,,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b的最小值(不考虑其他成本,为的整数部分,例如:,).20.(12分)我国是枇把生产大国,在对枇杷的长期栽培和选育中,形成了众多的品种.成熟的枇杷味道甜美,营养颇丰,而且中医认为枇杷有润肺、止咳、止渴的功效.因此,枇杷受到大家的喜爱.某果农调查了枇杷上市时间与卖出数量的关系,统计如表所示:结合散点图可知,线性相关.(Ⅰ)求关于的线性回归方程=(其中,用假分数表示);(Ⅱ)计算相关系数,并说明(I)中线性回归模型的拟合效果.参考数据:;参考公式:回归直线方程=中的斜率和截距的最小二乘法估计公式分别为:;相关系数21.(12分)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数(用数字作答).(1)全体排成一行,其中男生甲不在最左边;(2)全体排成一行,其中4名女生必须排在一起;(3)全体排成一行,3名男生两两不相邻.22.(10分)在直角坐标系中,已知椭圆经过点,且其左右焦点的坐标分别是,.(1)求椭圆的离心率及标准方程;(2)设为动点,其中,直线经过点且与椭圆相交于,两点,若为的中点,是否存在定点,使恒成立?若存在,求点的坐标;若不存在,说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:=.故选C.考点:1.微积分基本定理;2.定积分的计算.2、A【解析】

由题意,求得,则,再根据复数的除法运算,即可求解.【详解】由题意,复数在复平面内的对应点关于实轴对称,,则,则根据复数的运算,得.故选A.【点睛】本题主要考查了复数的表示,以及复数的除法运算,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.3、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.4、A【解析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.5、B【解析】

根据反证法的概念,可知假设应是所证命题的否定,即可求解,得到答案。【详解】根据反证法的概念,假设应是所证命题的否定,所以用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数”时,假设应为“假设都不是偶数”,故选B。【点睛】本题主要考查了反证法的概念及其应用,其中解答中熟记反证法的概念,准确作出所证命题的否定是解答的关键,着重考查了推理与运算能力,属于基础题。6、A【解析】

根据已知命题的结论的否定可确定结果.【详解】假设应为“中至少有一个大于”的否定,即“都不大于”,即“且”.故选:.【点睛】本题考查反证法的相关知识,属于基础题.7、A【解析】,选A.8、A【解析】

分析:画出可行域,由可行域结合圆C与x轴相切,得到b=1且-3≤a≤5,从而可得结果.详解:画出可行域如图,由圆的标准方程可得圆心C(a,b),半径为1因为圆C与x轴相切,所以b=1,直线y=1分别与直线x+y-6=0与x-y+4=0交于点B5,1所以-3≤a≤5,圆心C(a,b)与点(2,8-3≤a<2时,k∈72<a≤5时k∈-所以圆心C(a,b)与点(2,8)连线斜率的取值范围是-点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.9、B【解析】

分别将曲线,的极坐标方程化为普通方程,根据直线与圆相交,利用点到直线的距离公式结合垂径定理,可得结果【详解】根据题意,曲线曲线,则直线与圆相交,圆的半径为,圆心到直线的距离为设长为,则有,即解得(舍负)故线段的长度为故选【点睛】本题主要考查的是极坐标与直角坐标方程的互化,圆的方程以及直线与圆的位置关系,是一道基础题10、D【解析】分析:根据题意,分析可得“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则先分另外三人的编号必须“都大于28”或“都小于8”这两种情况讨论选出其他三人的情况,再将选出2组进行全排列,最后由分步计数原理计算可得答案.详解:根据题意,要确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则分2种情况讨论选出的情况:①如果另外三人的编号都大于28,则需要在29—40的12人中,任取3人,有种情况;②如果另外三人的编号都小于8,则需要在1—7的7人中,任取3人,有种情况.即选出剩下3人有种情况,再将选出的2组进行全排列,有种情况,则编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是种.故选:D.点睛:本题考查排列组合的应用,解题的关键是分析如何确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,进而确定分步,分类讨论的依据.11、D【解析】因为,所以复数在复平面内对应的点为,在第四象限,选D.12、C【解析】分析:根据复数的乘法运算进行化简,然后根据复数的几何意义,即可得到结论.详解:∵z=(﹣8+i)i=﹣8i+i2=﹣1﹣8i,对应的点的坐标为(﹣1,﹣8),位于第三象限,故选C.点睛:本题主要考查复数的几何意义,利用复数的运算先化简是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用等比数列的通项公式,列方程组,即可求出公比.【详解】由正项等比数列中,,得,解得,或(舍去).故答案为:【点睛】本题主要考查等比数列通项公式的应用,属于基础题.14、【解析】

写出通项公式,给r赋值即可得出.【详解】的通项公式为:Tr+1(-1)rx6﹣2r.令6﹣2r=0解得r=3,∴(-1)31,所以常数项为-1.故答案为:-1.【点睛】本题考查了二项式定理的应用,写出通项是关键,属于基础题.15、【解析】

在四面体中找出与垂直的面,在旋转的过程中在面内的射影始终与垂直求解.【详解】和都是等边三角形,取中点,易证,,即平面,所以.设在平面内的投影为,则在四面体绕着旋转时,恒有.因为平面,所以在平面内的投影为.因此,四面体在平面内的投影四边形的面积要使射影面积最小,即需最短;在中,,,且边上的高为,利用等面积法求得,边上的高,且,所以旋转时,射影的长的最小值是.所以【点睛】本题考查空间立体几何体的投影问题,属于难度题.16、【解析】分析:将函数变形得到函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,再根据函数值的对称性得到结果.详解:,可知函数是奇函数,假设在处取得最小值,则一定在-m处取得最大值,故在上取得的最大值为故答案为:-4.点睛:这个题目考查了函数的奇偶性,奇函数关于原点中心对称,在对称点处分别取得最大值和最小值;偶函数关于y轴对称,在对称点处的函数值相等,中经常利用函数的这些性质,求得最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.18、(1);(2)见解析【解析】

(1)在等式两边取自然对数,得,即,计算出与,将数据代入公式,计算出和,再代入回归方程可得出答案;(2)将和的值代入指数型回归函数,并将和代入,计算估计值与实际值之差的绝对值,看是否都小于,从而确定(1)中所得的回归方程是否可靠。【详解】(1)由已知,又令,故有.又,因为,,所以,,所以.(2)由(1)可知,当时,,与检验数据的误差为,不超过;当时,,与检验数据的误差为,不超过.故可以认为得到的回归方程是可靠的.【点睛】本题考查非线性回归分析,求非线性回归问题,通常要结合题中的变形,将非线性回归问题转化为线性回归问题求解,考查计算能力,属于中等题。19、(1);(2)①;②【解析】

(1)根据古典概型概率公式计算可得;(2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得.【详解】解:(1)设这6位顾客是A,B,C,D,E,F.其中3点以前购买的顾客是A,B,C,D.3点以后购买的顾客是E,F.从这6为顾客中任选2位有15种选法:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A,E),(A,F),(B,E),(B,F),(C,E),(C,F),(D,E),(D,F).根据古典概型的概率公式得;(2)①依题意,∴,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是天;②批发店毎天在购进4箱数量的玫瑰时所获得的平均利润为:4×2000−4×500×3=2000元;批发店毎天在购进5箱数量的玫瑰时所获得的平均利润为:元;批发店毎天在购进6箱数量的玫瑰时所获得的平均利润为:由,解得:,则所以,要求b的最小值,则求的最大值,令,则,明显,则在上单调递增,则在上单调递增,,则b的最小值为.【点睛】本题考查了古典概型及其概率计算公式,属中档题.20、(Ⅰ);(Ⅱ),因为,所以拟合效果较好。【解析】

(Ⅰ)利用最小二乘法求线性回归方程;(Ⅱ)直接依据公式计算相关系数,比较即可。【详解】(1),,,,所以=,则,故所求线性回归方程为;(II),故=,故(I)中线性回归模型的拟合效果较好.【点睛】本题主要考查线性回归方程的求法以及相关系数的计算与应用。21、(1)全体排在一行,其中男生甲不在最左边的方法总数为4320种;(2)全体排成一行,其中4名女生必须排在一起的方法总数为576种;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论