版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,322.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形3.若点共线,则的值为()A. B. C. D.4.若,则的坐标是()A. B. C. D.5.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°6.底面是正方形,从顶点向底面作垂线,垂足是底面中心的四棱锥称为正四棱锥.如图,在正四棱锥中,底面边长为1.侧棱长为2,E为PC的中点,则异面直线PA与BE所成角的余弦值为()A. B. C. D.7.已知与的夹角为,,,则()A. B. C. D.8.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数9.已知分别为内角的对边,若,b=则=()A. B. C. D.10.设,满足约束条件,则目标函数的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=12.已知数列满足且,则____________.13.设,用,表示所有形如的正整数集合,其中且,为集合中的所有元素之和,则的通项公式为_______14.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).15.在等差数列中,若,则______.16.在平面直角坐标系中,点到直线的距离为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.18.如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱.(1)证明FO∥平面CDE;(2)设BC=CD,证明EO⊥平面CDE.19.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.20.若关于的不等式对一切实数都成立,求实数的取值范围.21.已知数列的前项和为,且2,,成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.2、B【解析】
利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.3、A【解析】
通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.4、C【解析】
,.故选C.5、A【解析】
作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.6、B【解析】
可采用建立空间直角坐标系的方法来求两条异面直线所成的夹角,【详解】如图所示,以正方形ABCD的中心为坐标原点,DA方向为x轴,AB方向为y轴,OP为z轴,建立空间直角坐标系,,,由几何关系可求得,,,,为中点,,,,答案选B.【点睛】解决异面直线问题常用两种基本方法:异面直线转化成共面直线、空间向量建系法7、A【解析】
将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【详解】将等式两边平方得,,即,整理得,,解得,故选:A.【点睛】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.8、B【解析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.9、D【解析】
由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.10、A【解析】如图,过时,取最小值,为。故选A。二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】
解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,12、【解析】
由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题13、【解析】
把集合中每个数都表示为2的0到的指数幂相加的形式,并确定,,,,每个数都出现次,于是利用等比数列求和公式计算,可求出数列的通项公式.【详解】由题意可知,,,,是0,1,2,,的一个排列,且集合中共有个数,若把集合中每个数表示为的形式,则,,,,每个数都出现次,因此,,故答案为:.【点睛】本题以数列新定义为问题背景,考查等比数列的求和公式,考查学生的理解能力与计算能力,属于中等题.14、①③【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.15、【解析】
利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.16、2【解析】
利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和18、(1)证明见解析;(2)证明见解析;【解析】
(1)利用中点做辅助线,构造出平行四边形即可证明线面平行;(2)根据所给条件构造出菱形,再根据两个对应的线段垂直关系即可得到线面垂直.【详解】证明:(1)取CD中点M,连结OM,连结EM,在矩形ABCD中,又,则,于是四边形EFOM为平行四边形.∴FO∥EM.又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.(2)连结FM,由(1)和已知条件,在等边ΔCDE中,CM=DM,EM⊥CD且因此平行四边形EFOM为菱形,从而EO⊥FM.∵CD⊥OM,CD⊥EM∴CD⊥平面EOM,从而CD⊥EO.而FMCD=M,所以EO⊥平面CDF.【点睛】(1)线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线平行于此平面;(2)线面垂直的判定定理:一条直线与平面内两条相交直线垂直,则该直线垂直于此平面.19、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解析】
(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.【详解】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6个观众的编号为42;(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78;(3)记选择科技类的6人成绩分别为:,选择文艺类的4人成绩分别为:,由题:,,,,所以这10名选手的平均数为方差为【点睛】此题考查统计相关知识,涉及随机数表读数,系统抽样和平均数与方差的计算,对计算公式的变形处理要求较高.20、【解析】
对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川九洲防控科技有限责任公司招聘市场经理测试笔试历年参考题库附带答案详解
- 湖南省2023湖南长沙理工大学后勤保障服务中心招聘4人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2025 七年级数学下册坐标平移与图形对称轴变化关系课件
- 高层建筑施工安全应急方案
- 高层建筑结算支付凭证
- 2025 七年级数学下册数据收集的误差控制方法课件
- 2025 七年级数学下册立方根的定义与实例强化课件
- 高层建筑施工防火提升材料施工要点
- 2025 年国际商会脉冲调查:企业对美国新关税的反应 ICC Pulse Survey 2025 Business reactions to new U.S. tariffs
- 气道护理的感染控制
- 四川省金太阳2025-2026学年高三上学期11月联考英语试卷(含答案详解)
- 血糖仪项目计划书
- 电气工程项目验收规范及标准
- 个人年度工作计划及职业发展规划-适用于各行各业
- 种植树苗管护合同范本
- 2023年环评工程师考试环境影响评价相关法律法规讲义
- 2025工业智能体应用现状、挑战及对策建议报告-
- 人工流产术后宣教
- 《危险化学品安全法》知识培训
- 2025年新版《高标准农田建设项目竣工验收办法(试行)》
- 转让酒店合同协议书范本
评论
0/150
提交评论