版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆市渔涝中学2022-2023学年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设为等差数列的前n项和,若,则=(
)A、3
B、9
C、21
D、39参考答案:D略2.已知数列{an}中,a1=1,当n≥2时,an=2an-1+1,依次计算a2,a3,a4后,猜想an的一个表达式是()A.n2-1
B.(n-1)2+1
C.2n-1
D.2n-1+1参考答案:C略3.“”是“”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B4.设是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线,以下结论中正确的是( )A.和的相关系数为直线的斜率 B.和的相关系数在0到1之间C.当为偶数时,分布在两侧的样本点的个数一定相同 D.直线过点(,)参考答案:D5.12名同学分别到三个不同的路口进行车流量的调查,每个路口4人,则不同的分配方案共有A.种B.3种
C.种
D.种参考答案:A6.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C参考答案:D【考点】球的体积和表面积.【分析】求出球的体积的表达式,然后球的导数,推出,利用面积的导数是体积,求出球的表面积的增长速度与球半径的比例关系.【解答】解:由题意可知球的体积为,则c=V′(t)=4πR2(t)R′(t),由此可得,而球的表面积为S(t)=4πR2(t),所以V表=S′(t)=4πR2(t)=8πR(t)R′(t),即V表=8πR(t)R′(t)=2×4πR(t)R′(t)=故选D7.i是虚数单位,则=()A.3+i B.3﹣i C.1﹣3i D.﹣3﹣i参考答案:B【考点】A5:复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简得答案.【解答】解:=,故选:B.【点评】本题考查了复数代数形式的乘除运算,是基础题.8.因为指数函数是增函数,而是指数函数,所以是增函数,以上推理错误的是(A)大前提
(B)小前提
(C)推理形式
(D)以上都错参考答案:A9.用,,表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;
②若⊥,⊥,则⊥;③若∥,∥,则∥;
④若⊥,⊥,则∥.其中真命题的序号是().A、①②
B、②③
C、①④
D、③④参考答案:C略10.24名同学报名参加数学、物理、化学竞赛,若每人限报一项,则不同的报名方法种数是(
)A.34
B.43
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知抛物线焦点恰好是双曲线的右焦点,且双曲线过点(),则该双曲线的渐近线方程为
参考答案:略12.若则在展开式各项系数中最大值等于
;参考答案:2013.如图,正方体的棱长为4,分别是棱、的中点,长为2的线段的一个端点在线段上运动,另一个端点在底面上运动,则线段的中点的轨迹(曲面)与二面角所围成的几何体的体积为_________参考答案:14.已知抛物线y2=2px(p>0)的准线与圆(x-1)2+y2=4相切,则p=
;参考答案:略15.正四棱锥的底面边长为,高为,是边的中点,动点在这个棱锥表面上运动,并且总保持,则动点的轨迹的周长为.参考答案:16.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,则它们中的任意一艘都不需要等待码头空出的概率
.参考答案:【考点】几何概型.【分析】建立甲先到,乙先到满足的条件,画出0≤x≤24且0≤y≤24可行域面积,求出满足条件的可行域面积,由概率公式求解即可.【解答】解:甲船停泊的时间是1h,乙船停泊的时间是2h,设甲到达的时刻为x,乙到达的时刻为y,则(x,y)全部情况所对应的平面区域为;若不需等待则x,y满足的关系为,如图所示;它们中的任意一艘都不需要等待码头空出的概率为P==.故答案为:.17.已知某几何体的三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,则该几何体的体积为__________.参考答案:考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,可知该几何体是一个三棱柱切去一个三棱锥所得的组合体,分别求出体积后,相减可得答案.解答:解:由已知中的三视图,可知该几何体是一个三棱柱切去一个三棱锥所得的组合体,棱柱和棱锥的底面均为侧视图,故底面面积S=×4×4=8,棱柱的高为8,故体积为64,棱锥的高为4,故体积为:,故组合体的体积V=64﹣=,故答案为:点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.参考答案:(1)当a=﹣3时,f(x)≥3即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈?,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].19.已知数列{an}是公差为正数的等差数列,其前n项和为Sn,a1=1,且3a2,S3,a5成等比数列.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前n项和Tn.参考答案:【考点】数列的求和;数列递推式.【分析】(1)设出等差数列的公差,由3a2,S3,a5成等比数列列式求得公差,代入等差数列的通项公式得答案;(2)求出等差数列的前n项和,代入,利用裂项相消法求数列{bn}的前n项和Tn.【解答】解:(1)设数列{an}的公差为d(d>0),则a2=1+d,S3=3+3d,a5=1+4d,∵3a2,S3,a5成等比数列,∴,即(3+3d)2=(3+3d)?(1+4d),解得d=2.∴an=1+2(n﹣1)=2n﹣1;(2)由(1)得:,∴=,∴=.20.从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?参考答案:恰有2名男医生和恰有1名男医生两类,共有种.略21.已知等差数列{an}前三项的和为﹣3,前三项的积为8.(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.参考答案:【考点】数列的求和;等差数列的通项公式;等比数列的性质.【分析】(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为an=3n﹣7,则|an|=|3n﹣7|=,根据等差数列的求和公式可求【解答】解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,an=2﹣3(n﹣1)=﹣3n+5或an=﹣4+3(n﹣1)=3n﹣7(II)当an=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当an=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件故|an|=|3n﹣7|=设数列{|an|}的前n项和为Sn当n=1时,S1=4,当n=2时,S2=5当n≥3时,Sn=|a1|+|a2|+…+|an|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式综上可得22.某篮球赛甲、乙两队进入最后决赛,其中甲队有6名打前锋位,4名打后位,另有2名既能打前锋位又能打后位的全能型队员;乙队有4名打前锋位,3名打后位,另有5名既能打前锋位又能打后位的全能型队员。问:(1)甲队有多少种不同的出场阵容?(2)乙队又有多少种不同的出场阵容?(注:每种出场阵容中含3名前锋位和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期心脏病合并罕见心脏病的诊疗策略
- 妊娠期合并运动系统疾病管理策略
- 仓库物资管理试题及答案
- 2026年辐射安全考试题及答案
- 妇幼全周期健康管理:孕前到产后精准照护
- 头颈机器人手术的疼痛管理策略
- 大数据驱动下的尘肺病发病趋势预测模型
- 物业考试完整试题及答案
- 天然气考试及答案
- 2025年高职第二学年(增材制造技术)3D打印工艺测试题及答案
- 2026年及未来5年中国锻造件行业市场深度分析及发展前景预测报告
- 2025年荆楚理工学院马克思主义基本原理概论期末考试真题汇编
- 2026年恒丰银行广州分行社会招聘备考题库带答案详解
- 纹绣风险协议书
- 【语文】湖南省长沙市雨花区桂花树小学小学一年级上册期末试卷(含答案)
- 贵港市利恒投资集团有限公司关于公开招聘工作人员备考题库附答案
- 2026年及未来5年市场数据中国大型铸锻件行业市场深度分析及投资战略数据分析研究报告
- 2023年关于宁波市鄞州粮食收储有限公司公开招聘工作人员笔试的通知笔试备考题库及答案解析
- 经典离骚公开课
- GB/T 18318-2001纺织品织物弯曲长度的测定
- 医患沟通方法与技巧教材课件
评论
0/150
提交评论