版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解排列问题的几种常用策略长沙市周南中学数学教研室2掌握解决排列问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力3学会应用数学思想和方法解决排列问题教学目标1进一步理解和应用分步计数原理和分类计数原理。分类计数原理种不同的方法.分类计数原理完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:简称:加法原理分步计数原理
分步计数原理完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.简称:乘法原理分类计数原理与分步计数原理有什么不同?不同点:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.问题:相同点:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题。返回主页从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列2组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合3排列数公式:4组合数公式:1排列的定义:排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题解决排列综合性问题的一般过程如下:1认真审题弄清要做什么事。2怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3确定每一步或每一类是排列问题有序还是组合无序问题,元素总数是多少及取出多少个元素※解决排列综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一特殊元素和特殊位置优先策略例1由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置先排末位共有___然后排首位共有___最后排其它位置共有___由分步计数原理得=288位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?练习题二相邻元素捆绑策略例27人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法甲乙丙丁由分步计数原理可得共有种不同的排法=480解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列1820班某男选手在一次三分投篮大赛中,连续投篮8次,命中4次,其中恰好有3次连在一起投中的情形的不同种数为()练习题20三不相邻问题插空策略1809班元旦晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个空位(中间包含首尾两个空位)共有种
不同的方法
由分步计数原理,节目的不同顺序共有
种相相独独独元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端1809班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为()
30练习题四定序问题倍缩空位插入策略例47人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:倍缩法对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有种坐法,则共有种方法1思考:可以先让甲乙丙就坐吗(插入法先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法4*5*6*7定序问题可以用倍缩法,还可转化为占位插空模型处理练习题10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五重排问题求幂策略例5把我校6名教师分配到7个高三班去听课,共有多少种不同的分法解:完成此事共分六步:把第一位老师分配到班有种分法7把第二位教师分配到班也有7种分法,依此类推,由分步计数原理共有种不同的排法。允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种nm某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法()练习题六环排问题线排策略例65人围桌而坐,共有多少种坐法解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人A并从此位置把圆形展成直线其余4人共有____种排法即ABCEDDAABCE(5-1!一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有练习题6颗颜色不同的钻石,可穿成几种钻石圈606颗颜色不同的钻石,可穿成几种不同钻石圈?七多排问题直排策略例78人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排先在前4个位置排甲乙两个特殊元素有____种,再排后4个位置上的特殊元素有_____种,其余的5人在5个位置上任意排列有____种,则共有_________种.前排后排一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是______346练习题八排列组合混合问题先选后排策略例8有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法解:第一步从5个球中选出2个组成复合元共有__种方法再把5个元素包含一个复合元素装入4个不同的盒内有_____种方法根据分步计数原理装球的方法共有_____解决排列组合混合问题,先选后排是最基本的指导思想此法与相邻元素捆绑策略相似吗练习题一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有________种192九小集团问题先整体局部策略例9用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有____种排法,再排小集团内部共有_______种排法,由分步计数原理共有_______种排法31245小集团小集团排列问题中,先整体后局部,再结合其它策略进行处理。1计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为_______25男生和5女生站成一排照像,男生相邻,女生也相邻的排法有_______种小结本节课,我们对有关排列的几种常见的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年石狮市琼林中心幼儿园合同教师招聘备考题库及一套完整答案详解
- 2026年自助烧烤场地租赁合同
- 2026年贵族生活方式分享课程合同
- 2025年中国科学院心理研究所认知与发展心理学研究室杜忆研究组招聘备考题库及参考答案详解
- 2025执业药师继续教育试题库(含答案)
- 2025年北京体育大学医院(社区卫生服务中心)合同制人员公开招聘备考题库及参考答案详解1套
- 2025年中国水利水电科学研究院水力学所科研助理招聘备考题库及完整答案详解1套
- 2025年兴业银行总行社会招聘备考题库参考答案详解
- 2025年河南洛阳63880部队社会招聘备考题库及完整答案详解一套
- 中国电建集团贵阳勘测设计研究院有限公司2026届秋季招聘40人备考题库完整参考答案详解
- 2025秋人教版(新教材)初中美术八年级上册知识点及期末测试卷及答案
- DB50∕T 867.76-2025 安全生产技术规范 第76部分:汽车制造企业
- 2026年保安员考试题库500道附完整答案(历年真题)
- 2025至2030中国司法鉴定行业发展研究与产业战略规划分析评估报告
- 膝关节韧带损伤康复课件
- 个人契约协议书范本
- 医药区域经理述职报告
- 养老事业与养老产业协同发展路径探析
- 建筑施工项目职业病危害防治措施方案
- 袖阀注浆管施工方案
- 重症医学科抗生素应用规范
评论
0/150
提交评论