版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏银川二中2024届高一上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.A. B.C. D.2.设全集,集合,,则=()A. B.C. D.3.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.44.若点在角的终边上,则()A. B.C. D.5.已知点P3,-4是角α的终边上一点,则sinA.-75C.15 D.6.已知是关于x的一元二次不等式的解集,则的最小值为()A. B.C. D.7.已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为A.-5 B.-6C.-7 D.-88.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.9.已知函数,则()A.3 B.2C.1 D.010.设全集U=N*,集合A={1,2,5},B={2,4,6},则图中的阴影部分表示的集合为()A. B.4,C. D.3,二、填空题:本大题共6小题,每小题5分,共30分。11.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____12.下面有5个命题:①函数的最小正周期是②终边在轴上的角的集合是③在同一坐标系中,函数的图象和函数的图象有3个公共点④把函数的图象向右平移得到的图象⑤函数在上是减函数其中,真命题的编号是___________(写出所有真命题的编号)13.已知角的终边过点,则___________.14.设函数,则____________15.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°16.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求;(2)若,求实数的取值范围.18.已知集合A={x|2-a⩽x⩽2+a},B={x|(1)当a=3时,求A∩B,A∪∁(2)若A∩B=∅,求实数a的取值范围19.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域20.某城市2021年12月8日的空气质量指数(AirQualityInex,简称AQI)与时间(单位:小时)的关系满足下图连续曲线,并测得当天AQI的最大值为103.当时,曲线是二次函数图象的一部分;当时,曲线是函数(且)图象的一部分,根据规定,空气质量指数AQI的值大于或等于100时,空气就属于污染状态(1)求函数的解析式;(2)该城市2021年12月8日这一天哪个时间段空气属于污染状态?并说明理由21.设,其中(1)若函数的图象关于原点成中心对称图形,求的值;(2)若函数在上是严格减函数,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】,选A.2、B【解题分析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【题目详解】由题意知,所以.故选:B3、C【解题分析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【题目详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【题目点拨】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】利用三角函数的定义可求得结果.【题目详解】由三角函数定义可得.故选:A.5、A【解题分析】利用三角函数的定义可求得结果.【题目详解】由三角函数的定义可得sinα-故选:A.6、C【解题分析】由题知,,,则可得,则,利用基本不等式“1”的妙用来求出最小值.【题目详解】由题知是关于x的一元二次方程的两个不同的实数根,则有,,,所以,且是两个不同的正数,则有,当且仅当时,等号成立,故的最小值是.故选:C7、C【解题分析】由题意知,函数的周期为2,则函数在区间上的图像如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为-3,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.考点:分段函数及基本函数的性质.8、D【解题分析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【题目详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【题目点拨】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.9、B【解题分析】先求值,再计算即可.【题目详解】,,故选:B点睛】本题主要考查了分段函数求函数值,属于基础题.10、C【解题分析】由集合,,结合图形即可写出阴影部分表示的集合【题目详解】解:根据条件及图形,即可得出阴影部分表示的集合为,故选.【题目点拨】考查列举法的定义,以及图表示集合的方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意分析出直线与圆的位置关系,再求半径的范围.【题目详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【题目点拨】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.12、①④【解题分析】①,正确;②错误;③,和在第一象限无交点,错误;④正确;⑤错误.故选①④13、【解题分析】根据角终边所过的点,求得三角函数,即可求解.【题目详解】因为角的终边过点则所以故答案为:【题目点拨】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.14、2【解题分析】利用分段函数由里及外逐步求解函数的值即可.【题目详解】解:由已知,所以,故答案为:.【题目点拨】本题考查分段函数的应用,函数值的求法,考查计算能力.15、①②③④【解题分析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【题目详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题16、(答案不唯一)【解题分析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【题目详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)求出集合A和B,根据并集的计算方法计算即可;(2)求出,分B为空集和不为空集讨论即可.【小问1详解】,当时,,∴;【小问2详解】{或x>4},当时,,,解得a<1;当时,若,则解得.综上,实数的取值范围为.18、(1)A∩B={x|-1⩽x⩽1或4⩽x⩽5};A∪∁RB【解题分析】(1)a=3时求出集合A,B,再根据集合的运算性质计算A∩B和A∪∁(2)根据A∩B=∅,讨论A=∅和A≠∅时a的取值范围,从而得出实数a的取值范围【题目详解】解:(1)当a=3时,A={x|2-a⩽x⩽2+a}={x|-1⩽x⩽5},B={x|x2-5x+4⩾0}={x|x⩽1A∩B={x|-1⩽x⩽1或4⩽x⩽5};又∁RA∪∁(2)A∩B=∅,当2-a>2+a,即a<0时,A=∅,满足题意;当a⩾0时,应满足2-a>12+a<4,此时得0⩽a<1综上,实数a的取值范围是(-∞,1)【题目点拨】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题19、(1)(2)【解题分析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.20、(1)(2)当天在这个时间段,该城市的空气处于污染状态,理由见解析【解题分析】(1)先用待定系数法求得时的解析式,再算得当时的函数值,再由待定系数法可得时的解析式;(2)根据,分段解不等式即可.【小问1详解】当时,,将代入得,∵时,,∴由的图象是一条连续曲线可知,点在的图象上,当时,设,将代入得,∴【小问2详解】由题意可知,空气属于污染状态时,∴或,∴或,∴,∴当天在这个时间段,该城市的空气处于污染状态21、(1);(2)【解题分析】(1)根据函数的图象关于原点成中心对称,得到是奇函数,由此求出的值,再验证,即可得出结果;(2)任取,根据函数在区间上是严格减函数,得到对任意恒成立,分离出参数,进而可求出结果.【题目详解】(1)因为函数的图象关于原点成中心对称图形,所以是奇函数,则,解得,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理部妇产科护理新知识
- 2025年教育资源共享合同范本
- 2026年西宁城北朝阳社区卫生服务中心护理专业人员招聘备考题库及答案详解一套
- 重庆市开州区事业单位2025年面向应届高校毕业生考核招聘工作人员备考题库含答案详解
- 三明市皮肤病医院公开招聘2025年工作人员备考题库带答案详解
- 2026年江西省交通设计研究院有限责任公司及下属子公司招聘备考题库附答案详解
- 2026年淮北矿业集团所属企业招聘备考题库及答案详解(新)
- 2026年八里湖新区面向社会公开招聘交通劝导员及服务协调员的备考题库及一套完整答案详解
- 2025年“才聚齐鲁成就未来”山东通汇资本投资集团有限公司招聘备考题库有答案详解
- 护理专业中的沟通技巧与患者满意度
- 3D技术介绍及应用
- 甘肃医学院《药物化学》2024-2025学年期末试卷(A卷)
- 安全通道防护棚施工方案
- (正式版)DB54∕T 0430-2025 《河湖健康评价规范》
- 2025年设备预测性维护技术创新在电力设备中的应用
- 2025年江苏省职业院校技能大赛中职组(安全保卫)考试题库(含答案)
- 2025-2030集中式与分散式青年公寓运营效率对比分析
- 矿山环境监测评价报告
- 广西协美化学品有限公司年产7400吨高纯有机过氧化物项目环评报告
- 铅球的技术教学
- 2025年嫩江市招聘农垦社区工作者(88人)笔试备考试题附答案详解
评论
0/150
提交评论