版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:分类加法计数原理与分步乘法计数原理知识点1.分类加法计数原理(加法原理)的概念一般形式:完成一件事有n类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,……,在第n类方案中有种不同的方法,那么完成这件事共有N=++……+种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=种不同的方法.3.两个原理的区别:(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【注1】1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;=3\*GB3③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6.分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8.涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【注2】(1)用两个计数原理解决计数问题时,关键是在开始之前要进行仔细分析——需要分类还是需要分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.(2)两个原理的区别:①“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.②“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.(3)本题定义了新概念“回文数”,然后以此为出发点设置了求五位“回文数”的个数问题.求解时充分依据题设条件与“回文数”的定义,运用分步、分类计数原理,逐一分析探求“回文数”的形成过程,从而确定其个数使得问题获解.典型例题例1图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有( )种不同的取法.A.120 B.16C.64 D.39例2只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有 ()A.6个 B.9个 C.18个 D.36个例3如图所示,小明从街道的处出发,先到处与小红会合,再一起到位于处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9例4某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种例5用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个例6图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有( )种不同的取法.A.120 B.16C.64 D.39例7只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有 ()A.6个 B.9个 C.18个 D.36个例8某通讯公司推出一组卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“5”或“8”的一律作为“金马卡”,享受一定优惠政策,则这组号码中“金马卡”的个数为()A.2000B.4096C.5904D.8320例9某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有().33种.24种.27种.36种例10从1,2,…,9这九个数字中,任意抽取两个相加所得的和为奇数的不同代数式的种数是()A.6B.9C.20D.25例11按ABO血型系统学说,每个人的血型为A,B,O,AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型的O型,则父母血型的所有可能情况有()A.12种B.6种C.10种D.9种例12有5列火车停在某车站并列的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有()A.96种B.24种C.120种D.12种例13把5名师范大学的毕业生分配到A、B、C三所学校,每所学校至少一人。其中学数学的两人,学语文的两人,学英语的一人,若A校不招收同一学科的毕业生,则不同的分配方法共有()A.148种B.132种C.126种D.84种例14一个盒子里有5个分别标有号码为1,2,3,4,5的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有__________.例15某校选定甲、乙、丙、丁、戊共名教师去个边远学校支教,每学校至少人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有__________种.例16某校高三年级5个班进行拔河比赛,每两个班都要比赛一场.到现在为止,1班已经比了4场,2班已经比了3场,3班已经比了2场,4班已经比了1场,则5班已经比了______场.举一反三1.在中国文字语言中有回文句,如:“中国出人才人出国中.”其实,在数学中也有回文数.回文数是指从左到右与从右到左读都一样的正整数,如:3位回文数:101,111,121,…,191,202,…,999,则5位回文数有A.648个 B.720个C.900个 D.1000个2.用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12 D.154.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为______.5.设,,,若以,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有__________个.6.某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法的种数是()A.18B.24C.36D.427.11月11日这一天被称为“百年一遇的光棍节”,因为这一天中有6个“1”,如果把“20111111”中的8个数字顺序任意排列,可以组成的八位数共有()A.49个B.36个C.28个D.24个8.有5列火车停在某车站并列的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有()A.96种B.24种C.120种D.12种9.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,恰好有三个连续的小球涂红色,则涂法共有().A.12B.24C.36 D.4810.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个11.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,恰好有三个连续的小球涂红色,则涂法共有().A.12B.24C.36 D.4812.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为______.13.设,,,若以,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有__________个.课后练习1.在某商业促销的最后—场活动中,甲、乙、丙、丁、戊、已名成员随机抽取个礼品,每人最多抽一个礼品,且礼品全被抽光,个礼品中有两个完全相同的笔记本电脑,两个完全相同的山地车,则甲、乙两人都抽到礼品的情况有()A.种B.种C.种D.9种2.某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种3.如图,在A、B间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A、B之间线路不通,则焊接点脱落的不同情况有()A.10B.13C.12D.154.某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法的种数是()A.18B.24C.36D.425.某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有().33种.24种.27种.36种6.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有5种颜色可供使用,则不同的染色方法总数有()A.240种B.300种C.360种D.420种7.把5名师范大学的毕业生分配到A、B、C三所学校,每所学校至少一人。其中学数学的两人,学语文的两人,学英语的一人,若A校不招收同一学科的毕业生,则不同的分配方法共有(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省佛山市南海区2025-2026学年上学期期末八年级数学试卷(含答案)
- 2025-2026学年甘肃省兰州市榆中县七年级(上)期末数学试卷(含答案)
- 五年级科学上册期末试卷及答案
- 国家电网物资采购标准 新一代集控站设备监控系统系列规范 第6部分:人机界面(2022版试行)
- 2020年山西省临汾市康和中学高一英语上学期期末试卷含解析
- 2022~2023法院司法辅助人员考试题库及答案第260期
- 2026年小学道德与法治五年级下册培训试卷
- 人教版八年级生物上册第五单元-生物圈中的其他生物难点解析试题(含答案解析)
- 初中安全班队课课件
- 八年级语文下册期中试题附答案
- 【地理】期末重点复习课件-2025-2026学年八年级地理上学期(人教版2024)
- 2026年乡村治理体系现代化试题含答案
- 通风设备采购与安装合同范本
- 化工设备清洗安全课件
- 2026元旦主题班会:马年猜猜乐新春祝福版 教学课件
- T∕ZZB 1815-2020 塑料 汽车配件用再生聚碳酸酯(PC)专用料
- 2025~2026学年吉林省吉林市一中高一10月月考语文试卷
- 天津市南开中学2025-2026学年高一上数学期末调研模拟试题含解析
- 麻辣烫创业商业计划书范文
- 东呈集团内部控制中存在的问题及对策研究
- 高科技产业园区运营管理手册
评论
0/150
提交评论