版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州二中学2023年数学九年级第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.点P(-6,1)在双曲线上,则k的值为()A.-6 B.6 C. D.2.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块 B.8块,24块C.20块,12块 D.12块,20块3.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是()A. B. C. D.4.如图,正方形中,,为的中点,将沿翻折得到,延长交于,,垂足为,连接、.结论:①;②≌;③∽;④;⑤.其中的正确的个数是()A.2 B.3 C.4 D.55.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定6.在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为()A. B. C. D.7.在中,,,下列结论中,正确的是()A. B.C. D.8.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180°9.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B. C. D.110.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A. B. C.1 D.2二、填空题(每小题3分,共24分)11.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是________.12.在如图所示的几何体中,其三视图中有三角形的是______(填序号).13.如图1是一种广场三联漫步机,其侧面示意图,如图2所示,其中,.①点到地面的高度是__________.②点到地面的高度是____________.14.已知反比例函数y=的图象在第一、三象限内,则k的值可以是__.(写出满足条件的一个k的值即可)15.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.16.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.17.若,则=_____.18.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.三、解答题(共66分)19.(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.求证:是的切线;已知的半径是.①若是的中点,,则;②若,求的长.20.(6分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?21.(6分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.(1)求的长;(2)若,求.22.(8分)如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点.(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由.23.(8分)如图,抛物线与轴交于点和,与轴交于点顶点为.求抛物线的解析式;求的度数;若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.①求线段的最大值;②若是等腰三角形,直接写出的值.24.(8分)某商品市场销售抢手,其进价为每件80元,售价为每件130元,每个月可卖出500件;据市场调查,若每件商品的售价每上涨1元,则每个月少卖2件(每件售价不能高于240元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的涨价多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的涨价多少元时,每个月的利润恰为40000元?根据以上结论,请你直接写出x在什么范围时,每个月的利润不低于40000元?25.(10分)满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?26.(10分)有四张背面相同的纸牌A、B、C、D,其正面上方分别画有四个不同的几何图形,下方写有四个不同算式,小明将四张纸牌背面朝上洗匀后摸出一张,将其余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张纸牌的图形是中心对称图形且算式也正确的纸牌的概率.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据反比例函数图象上点的坐标特征可直接得到答案.【详解】解:∵点P()在双曲线上,∴;故选:A.【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2、D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.3、C【分析】根据完全平方公式配方即可.【详解】解:x2+8x-9=0x2+8x=9x2+8x+16=9+16故选C.【点睛】此题考查的是用配方法解一元二次方程,掌握完全平方公式是解决此题的关键.4、C【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可.【详解】解:∵正方形ABCD中,AB=6,E为AB的中点
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB
∵∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF∥ED
故结论①正确;
∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG
∴结论②正确;
∵FH⊥BC,∠ABC=90°
∴AB∥FH,∠FHB=∠A=90°
∵∠EBF=∠BFH=∠AED
∴△FHB∽△EAD
∴结论③正确;
∵Rt△DFG≌Rt△DCG
∴FG=CG
设FG=CG=x,则BG=6-x,EG=3+x
在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2
解得:x=2
∴BG=4
∴tan∠GEB=,故结论④正确;
∵△FHB∽△EAD,且,∴BH=2FH
设FH=a,则HG=4-2a
在Rt△FHG中,由勾股定理得:a2+(4-2a)2=22
解得:a=2(舍去)或a=,∴S△BFG==2.4
故结论⑤错误;
故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.5、C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.6、B【分析】得出总的情况数和失败的情况数,根据概率公式计算出失败率,从而得出中奖率.【详解】共有4×4=16种情况,失败的情况占3+2+1=6种,失败率为,中奖率为.故选:B.【点睛】本题考查了利用概率公式求概率.正确得出失败情况的总数是解答本题的关键.用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.8、D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.9、B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.10、C【详解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【点睛】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.二、填空题(每小题3分,共24分)11、【分析】由题意根据概率的概念以及求概念公式进行分析即可求解.【详解】解:由题意可得:一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,共8个,从中随机摸出一个,则摸到黄球的概率是.故答案为:.【点睛】本题考查概率的求法,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、①【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此【详解】解:圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,长方体主视图,左视图,俯视图都是矩形,
圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,所以三视图中有三角形的是①.故答案为①【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.13、【分析】①过点A作,垂足为F,得出,BF=40,利用勾股定理可得出AF的长,即A到地面的高度②过点D作,垂足为H,可得出,,可求出AH的长度,从而得出D到底面的高度为AH+AF.【详解】解:过点A作,垂足为F,过点D作,垂足为H,如下图:①∵,∴,BF=40cm∴∴A到地面的高度为:.②∵∴,∴,∴∴AH=10,∴D到底面的高度为AH+AF=(10+)cm.【点睛】本题考查的知识点是等腰三角形的性质以及相似三角形的判定与性质,解题的关键是弄清题意,结合题目作出辅助线,再利用相似三角形性质求解.14、1【解析】在本题中已知“反比例函数的图像在第一、三象限内,”从而得到2-k>0,顺利求解k的值.【详解】反比例函数的图像在第一、三象限内可得,2-k>0解得:k<2不妨取k=1,可得已知反比例函数,即可满足的图像在第一、三象限内.【点睛】熟练掌握反比例函数的性质是本题的解题关键.15、红【解析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.16、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.17、【解析】=.18、a<2且a≠1.【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.三、解答题(共66分)19、(1)详见解析;(2)①;②【分析】(1)延长交于,连接.得出,再利用角之间的关系可得出,即,结论即可得证.(2)①利用勾股定理即可求解②由知,,根据对应线段成比例,可得出AB,AD的值,从而可求出AI的长.【详解】解:(1)证明:延长交于,连接.是的内心,平分平分...又,....为的切线.①∵∴.②解:由知,..∴.【点睛】本题考查的知识点有圆的切线的判定定理,相似三角形的判定与性质,综合性较强,利用数形结合的方法可以更好的理解题目,有助于找出解题的方向.20、定价为57.5元时,所获利润最大,最大利润为6125元.【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可.【详解】设所获利润为元,每件降价元则降价后的每件利润为元,每星期销量为件由利润公式得:整理得:由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小故当时,y取得最大值,最大值为6125元即定价为:元时,所获利润最大,最大利润为6125元.【点睛】本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键.21、(1)6;(2)4【分析】(1)连接EF,证明△EFG∽△DCG.推出,求出DE即可解决问题.(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,,即可求出答案.【详解】解:(1)连接.∵是平行四边形,∴点为的中点.∵为的中点,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)n=3,k=1,点B的坐标为(2,3);(2)x≤﹣2或x>3;(3)点D的坐标为(2+,3);(2)存在,P(3,1).【分析】(1)把点A(2,n)代入一次函数中可求得n的值,从而求出一次函数的解析式,于是可得B的坐标;再把点A的坐标代入反比例函数中,可得到k的值;
(2)观察反比例函数图象即可得到当y≥-3时,自变量x的取值范围.(3)先求出菱形的边长,然后利用平移的性质可得点D的坐标;
(2)作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小,据此可解.【详解】解:(1)把点A(2,n)代入一次函数y=x﹣3,可得n=×2﹣3=3;把点A(2,3)代入反比例函数,可得3=,解得:k=1.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=3,解得:x=2,∴点B的坐标为(2,3),(2)当y=﹣3时,,解得:x=﹣2.故当y≥﹣3时,自变量x的取值范围是x≤﹣2或x>3.(3)如图1,过点A作AE⊥x轴,垂足为E,∵A(2,3),B(2,3),∴OE=2,AE=3,OB=2,∴BE=OE﹣OB=2﹣2=2,在Rt△ABE中,AB==.∵四边形ABCD是菱形,∴AD=AB=,AD∥BC,∴点A(2,3)向右平移个单位到点D,∴点D的坐标为(2+,3).(2)存在.如图2,作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小.设直线AQ的解析式为y=kx+b,∵点B(2,3)关于y轴的对称点Q的坐标为(-2,3),∴,∴,∴直线AQ的关系式为,∴直线AQ与y轴的交点为P(3,1).∴在y轴上存在点P(3,1),使的值最小.【点睛】本题属于反比例函数综合题,考查了待定系数法求函数解析式,菱形的性质、反比例函数的性质等知识,熟练掌握相关性质及数形结合思想是解题关键.23、(1)y=x2-4x+2,(2)90°,(2)①,②m=2或m=或m=1.【分析】(1)将点B,C代入抛物线的解析式中,利用待定系数法即可得出答案;(2)先求出点D的坐标,然后利用OB=OC,得出∠CBO=45°,过D作DE⊥x轴,垂足为E,再利用DE=BE,得出∠DBO=45°,则的度数可求;(2)①先用待定系数法求出直线BC的表达式,然后设出M,N的坐标,表示出线段MN的长度,利用二次函数的性质即可求出最大值;②分三种情况:BN=BM,BN=MN,NM=BM分别建立方程求解即可.【详解】解:(1)将点B(2,0)、C(0,2)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2-4x+2.(2)y=x2-4x+2=(x-2)2-1,∴D点坐标为(2,-1).∵OB=OC=2,∴∠CBO=45°,过D作DE⊥x轴,垂足为E,则DE=BE=1,∴∠DBO=45°,∴∠CBD=90°.(2)①设直线BC的解析式为y=kx+2,得:0=2k+2,解得:k=-1,∴直线BC的解析式为y=-x+2.点M的坐标为(m,m2-4m+2),点N的坐标为(m,-m+2).线段MN=(-m+2)-(m2-4m+2)=-m2+2m=-(m-)2+.∴当m=时,线段MN取最大值,最大值为.②在Rt△NBH中,BH=2-m,BN=(2-m).当BN=BM时,NH=MH,则-m+2=-(m2-4m+2),即m2-5m+6=0,解得m1=2,m2=2(舍去),当BN=MN时,-m2+2m=(2-m),解得:m1=,m2=2(舍去),当NM=BM时,∠MNB=∠NBM=45°,则MB与x轴重合,点M与点A重合,∴m=1,综合得:m=2或m=或m=1.【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质是解题的关键.24、(1)y=﹣2x2+400x+25000,0<x≤1,且x为正整数;(2)件商品的涨价100元时,每个月可获得最大利润,最大的月利润是45000元;(3)每件商品的涨价为50元时,每个月的利润恰为40000元;当50≤x≤1,且x为正整数时,每个月的利润不低于40000元【分析】(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,每件商品的售价每上涨1元,则每个月少卖2件,根据月利润=单件利润×数量,则可以得到月销售利润y的函数关系式;(2)由月利润的函数表达式y=﹣2x2+400x+25000,配成顶点式即可;(3)当月利润y=40000时,求出x的值,结合(1)中的取值范围即可得.【详解】解:(1)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元,由题意得:y=(130﹣80+x)(500﹣2x)=﹣2x2+400x+25000∵每件售价不能高于240元∴130+x≤240∴x≤1∴y与x的函数关系式为y=﹣2x2+400x+25000,自变量x的取值范围为0<x≤1,且x为正整数;故答案为:y=﹣2x2+400x+25000;0<x≤1.(2)∵y=﹣2x2+40
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学工学(建筑材料)试题及答案
- 2025年中职生态环境数智化监测技术(数据处理基础)试题及答案
- 2025年大学心理健康(职业规划)试题及答案
- 2025年高职(农业水利工程)节水灌溉技术试题及答案
- 2025年大学轨道交通信号与控制(系统设计)期末试题
- 2025年大学大四(水利水电工程)水利水电综合试题及答案
- 2025年中职应用黑山语(日常黑语交流)试题及答案
- 2025年大学水利水电工程(水利工程监理)试题及答案
- 2025年高职摄影摄像技术(商业摄影)试题及答案
- 2025年中职服装工艺(工艺优化)试题及答案
- 2025年社区护理年度工作总结与展望
- 2026年黑龙江农业经济职业学院高职单招职业适应性测试模拟试题及答案详解
- 2026年ps一级考试试题
- 2025年保安员理论考试题库附答案
- 2025-2026学年上海市行知实验中学高二上册期中考试语文试题 含答案
- 2026年广东省佛山市六年级数学上册期末考试试卷及答案
- 2026届吉林省长春六中、八中、十一中等省重点中学高二生物第一学期期末联考试题含解析
- 2026届浙江省学军中学英语高三第一学期期末达标检测试题含解析
- 工会女工培训课件
- 2025新疆和田地区“才聚和田·智汇玉都”招才引智招聘工作人员204人(公共基础知识)综合能力测试题附答案解析
- 2026年医疗机构人力资源配置降本增效项目分析方案
评论
0/150
提交评论