海南省海口市琼山区重点中学2023-2024学年中考二模数学试题含解析_第1页
海南省海口市琼山区重点中学2023-2024学年中考二模数学试题含解析_第2页
海南省海口市琼山区重点中学2023-2024学年中考二模数学试题含解析_第3页
海南省海口市琼山区重点中学2023-2024学年中考二模数学试题含解析_第4页
海南省海口市琼山区重点中学2023-2024学年中考二模数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省海口市琼山区重点中学2023-2024学年中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果两圆只有两条公切线,那么这两圆的位置关系是()A.内切 B.外切 C.相交 D.外离2.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m3.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.54.如图,在正方形网格中建立平面直角坐标系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,15.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于()A. B. C. D.6.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A. B. C. D.7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A. B. C. D.8.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)9.下列事件中是必然事件的是()A.早晨的太阳一定从东方升起B.中秋节的晚上一定能看到月亮C.打开电视机,正在播少儿节目D.小红今年14岁,她一定是初中学生10.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100° B.110° C.120° D.130°二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.12.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).13.计算:a3÷(﹣a)2=_____.14.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正确的是______.(填序号)15.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)16.设、是一元二次方程的两实数根,则的值为.17.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是.三、解答题(共7小题,满分69分)18.(10分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.19.(5分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.20.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)21.(10分)先化简,再求值:(+)÷,其中x=22.(10分)已知.(1)化简A;(2)如果a,b是方程的两个根,求A的值.23.(12分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(14分)如图,在中,是的中点,过点的直线交于点,交的平行线于点,交于点,连接、.求证:;请你判断与的大小关系,并说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【详解】根据两圆相交时才有2条公切线.故选C.【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.2、D【解析】

根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.4、C【解析】

根据A点坐标即可建立平面直角坐标.【详解】解:由A(0,2),B(1,1)可知原点的位置,

建立平面直角坐标系,如图,

∴C(2,-1)

故选:C.【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.5、B【解析】

首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,

∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,

∴AB=BC,

∵,

∴△ABC是等边三角形,

∴AC=AB=1.

故选:B.【点睛】本题考点:菱形的性质.6、B【解析】

延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.7、B【解析】

根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.8、C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.9、A【解析】

必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;

一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.10、B【解析】

根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理12、.【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案为.点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.13、a【解析】

利用整式的除法运算即可得出答案.【详解】原式=a=a.【点睛】本题考查的知识点是整式的除法,解题关键是先将-a2变成a14、①②④【解析】

①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断②由旋转得出AD=AF,∠DAE=∠EAF,及公共边即可证明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确【详解】由旋转,可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,结论①正确;②由旋转,可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),结论②正确;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°两个条件,无法证出△ABE∽△ACD,结论③错误;④由旋转,可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,结论④正确.故答案为:①②④【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质,勾股定理,熟练掌握定理是解题的关键15、下降【解析】

根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.【详解】解:∵在中,,∴抛物线开口向上,∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,故答案为下降.【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.16、27【解析】试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.17、6或12或1.【解析】

根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整数k<5,∴k=4.∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!三、解答题(共7小题,满分69分)18、【解析】

试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)=.考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.19、(1)1000;(2)54°;(3)见解析;(4)32万人【解析】

根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人)(2)360°×=54°,故答案为:1000人;

54°

;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.20、17.3米.【解析】分析:过点C作于D,根据,得到,在中,解三角形即可得到河的宽度.详解:过点C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:这条河的宽是米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.21、-【解析】

先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【详解】原式=[+]÷=[-+]÷=·=,当x=时,原式==-.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22、(1);(2)-.【解析】

(1)先通分,再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论.【详解】(1)A=﹣==;(2)∵a,b是方程的两个根,∴a+b=4,ab=-12,∴.【点睛】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.23、(1)这种篮球的标价为每个50元;(2)见解析【解析】

(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论