2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题【含答案】_第1页
2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题【含答案】_第2页
2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题【含答案】_第3页
2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题【含答案】_第4页
2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题【含答案】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页2025届重庆市荣昌清流镇民族中学数学九上开学监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是A. B. C. D.2、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为()A. B. C. D.3、(4分)某青年排球队12名队员的年龄情况如下表:年龄1819202122人数1xy22其中x>y,中位数为20,则这个队队员年龄的众数是()A.3 B.4 C.19 D.204、(4分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3

B.2

C.

D.45、(4分)在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A.k=-2,b≠3B.k=-2,b=3C.k≠-2,b≠3D.k≠-2,b=36、(4分)下列各式从左到右的变形中,是因式分解的为().A. B.C. D.7、(4分)若式子在实数范围内有意义,则x的取值范围是(

)A.x≥ B.x> C.x≥ D.x>8、(4分)如图,矩形沿折叠,使点落在边上的点处,如果,那么的度数是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.10、(4分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.11、(4分)分式x2-9x+3的值为0,那么x12、(4分)使有意义的x的取值范围是.13、(4分)如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________

。三、解答题(本大题共5个小题,共48分)14、(12分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.15、(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.(1)求直线的解析式;(2)在线段上找一点,使得,线段与相交于点.①求点的坐标;②点在轴上,且,直接写出的长为.16、(8分)如图,中,点为边上一点,过点作于,已知.(1)若,求的度数;(2)连接,过点作于,延长交于点,若,求证:.17、(10分)为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?18、(10分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.(1)证明:;(2)当点为的中点时,若,求的度数;(3)当点运动到与点重合时,延长交于点,若,则.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.20、(4分)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.21、(4分)分解因式:m2﹣9m=_____.22、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.23、(4分)已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.二、解答题(本大题共3个小题,共30分)24、(8分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?25、(10分)已知,直线与双曲线交于点,点.(1)求反比例函数的表达式;(2)根据图象直接写出不等式的解集.(3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.26、(12分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:候选人笔试成绩面试成绩甲9088乙8492丙x90丁8886(1)直接写出四名候选人面试成绩中位数;(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为:21故答案选:C本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.2、C【解析】

先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.【详解】∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°-∠A)=×140°=70°,∵△EBD是由△ABC旋转得到,∴旋转角为∠ABC=70°,故选C.本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.3、C【解析】

先求出x+y=7,再根据x>y,由众数的定义即可求出这个队员年龄的众数.【详解】解:依题意有x+y=12−1−2−2=7,∴y=7-x∵x>y,∴x>7-x∴∵x为整数∴x≥4,∴这个队队员年龄的众数是1.故选C.本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.4、A【解析】

利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在△ABC中,D、E分别是BC、AC的中点,

∴DE∥AB,

∴∠EDC=∠ABC.

∵BF平分∠ABC,

∴∠EDC=2∠FBD.

在△BDF中,∠EDC=∠FBD+∠BFD,

∴∠DBF=∠DFB,

∴FD=BD=BC=×6=1.

故选:A.考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5、A【解析】试题解析:∵直线y=kx+1与直线y=-2x+b平行,

∴k=-2,b≠1.

故选A.6、C【解析】

根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;

B、右边不是积的形式,故选项错误;

C、x2-1=(x+1)(x-1),正确;

D、等式不成立,故选项错误.

故选:C.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.7、A【解析】

根据:二次根式的被开方数必须大于或等于0,才有意义.【详解】若式子在实数范围内有意义,则2x-3≥0,即x≥.故选A本题考核知识点:二次根式有意义问题.解题关键点:熟记二次根式有意义条件.8、C【解析】

先由矩形的性质折叠的性质得出∠AFE=∠D=90°,从而得出∠CFE=60°,在利用直角三角形的性质即可.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,由折叠得,∠AFE=∠D=90°,∴∠BFA+∠CFE=90°,∴∠CFE=90°-∠BFA=60°,∵∠C=90°,∴∠CEF=90°-∠CFE=30°,故选C.此题主要考查了矩形的性质,折叠的性质,直角三角形的性质,解本题的关键是求出∠CFE.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据题意可以写出相应的函数关系式,本题得以解决.【详解】由题意可得,当x>3时,y=5+(x-3)×1.2=1.2x+1.1,故答案为:y=1.2x+1.1.本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.10、【解析】

画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11、2【解析】

分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x2﹣9=1且x+2≠1,解得x=2.故答案为:2.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.12、【解析】

根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1.故答案为x≥﹣1.本题考查了二次根式有意义的条件13、【解析】

证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD为等腰直角三角形∴BC=AD==.故答案是:.考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)甲车间样品的合格率为(2)乙车间的合格产品数为个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为;(2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为,∴乙车间的合格产品数为(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.15、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.【解析】

(1)求出B,C两点坐标,利用待定系数法即可解决问题.(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.【详解】(1)直线交轴于点,交轴于点,,,点在轴的负半轴上,且的面积为8,,,则,设直线的解析式为即,解得,故直线的解析式为.(2)①连接.点是直线和直线的交点,故联立,解得,即.,故,且,,,,,,即,可求直线的解析式为,点是直线和直线的交点,故联立,解得,即,.②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.则,,,,,直线的解析式为,设直线交轴于,则,,.作,则,可得直线的解析式为,,,综上所述,满足条件的的值为8或.本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.16、(1)∠BEA=70°;(2)证明见解析;【解析】

(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.

(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【详解】(1)解:作BJ⊥AE于J.

∵BF⊥AB,

∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,

∴∠ABJ=∠AEF,

∵四边形ABCD是平行四边形,

∴∠D=∠ABC,

∵∠D=2∠AEF,

∴∠ABE=2∠AEF=2∠ABJ,

∴∠ABJ=∠EBJ,

∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,

∴∠BAJ=∠BEJ,

∵∠BAE=70°,

∴∠BEA=70°.

(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.

∵AD∥BC,

∴∠DAE=∠BEA,

∵∠BAE=∠BEA,

∴∠BAE=∠DAE,

∵EF⊥AB,EM⊥AD,

∴EF=EM,

∵EA=EA,∠AFE=∠AME=90°,

∴Rt△AEF≌Rt△AEM(HL),

∴AF=AM,

∵EG⊥CG,

∴∠EGC=90°,

∵∠ECG=45°,

∠GCE=45°,

∴GE=CG,

∵AD∥BC,

∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,

∴∠GAH=∠GHA,

∴GA=GH,

∵∠AGE=∠CGH,

∴△AGE≌△HGC(SAS),

∴EA=CH,

∵CM=CN,∠AME=∠CNH=90°,

∴Rt△EMA≌Rt△CNH(HL),

∴AM=NH,

∴AN=HM,

∵△ACN是等腰直角三角形,

∴AC=AN,即AN=AC,

∴AH=AM+HM=AF+AC.此题考查平行四边形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17、(1)这个月应缴纳电费64元;(2)如果小张家一个月用电a度,那么这个月应缴纳电费(0.8a-45)元;(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.【解析】

(1)如果小张家一个月用电128度.128<150,所以只有一种情况,每度电0.5元,可求解.(2)a>150,两种情况都有,先算出128度电用的钱,再算出剩下的(a﹣128)度的电用的钱,加起来就为所求.(3)147.8>128×0.5,所以所用的电超过了128度电,和2中的情况类似,设此时用电a度,可列方程求解.【详解】(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150),=75+0.8a﹣120,=0.8a﹣45,答:如果小张家一个月用电a度(a>150),那么这个月应缴纳电费(0.8a﹣45)元.(3)设此时用电a度,0.5×150+0.8(a﹣150)=147.8,0.8a﹣45=147.8,解得a=1.答:如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.18、(1)见解析;(2)53°;(3)【解析】

(1)根据两角对应相等的两个三角形相似即可判断.(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠ABP=90°,∵BQ⊥AP,∴∠BQP=∠ABP=90°,∵∠BPQ=∠APB,∴△ABP∽△BQP.(2)解:∵△ABP∽△BQP,∴∴PB2=PQ•PA,∵PB=PC,∴PC2=PQ•PA,∴∵∠CPQ=∠APC,∴△CPQ∽△APC,∴∠PQC=∠ACP,∵∠BAC=37°,∴∠ACB=90°-37°=53°,∴∠CQP=53°.(3)解:连接AF.∵∠D=∠AQF=90°,AF=AF,AD=AQ,∴Rt△ADF≌Rt△AQF(HL),∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,∵∠BCF=∠CQB=∠CQF=90°,∴∠BCQ+∠FCQ=90°,∠CBQ=90°,∴∠FCQ=∠CBQ,∴△BCQ∽△CFQ,∴,∴∴,∵CF∥AB,∴,∴∴∴x2+xy-y2=0,∴x=y或(舍弃),∴∴.故答案为:.本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,20、7.1cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.21、m(m﹣9)【解析】

直接提取公因式m即可.【详解】解:原式=m(m﹣9).故答案为:m(m﹣9)此题主要考查了提公因式法分解因式,关键是正确找出公因式.22、25【解析】

根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.【详解】解:在平行四边形ABCD中,

∵AB=CD,

∵BD=CD,

∴BD=BA,

又∵AM⊥BD,DN⊥AB,

∴∠AMB=∠DNB=90°,

在△ABM与△DBN中,

∴△ABM≌△DBN(AAS),

∴AM=DN,

∵PM=DN,

∴AM=PM,

∴△AMP是等腰直角三角形,

∴∠MAP=∠APM=45°,

∵AB∥CD,

∴∠ABD=∠CDB=70°,

∴∠PAB=∠ABD-∠P=25°,

故答案为:25.本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.23、乙对角线互相平分的四边形是平行四边形【解析】

根据平行四边形的判定方法,即可解决问题.【详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)被调查的学生有500人,补全的条形统计图详见解析;(2)1;(3)该校每天户外活动时间超过1小时的学生有740人.【解析】试题分析:(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.试题解析:解:(1)由条形统计图和扇形统计图可得,0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论