版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上册《143角的平分线》同步练习题及答案
学校:班级:姓名:考号:
第1课时角的平分线的性质
基础知识训练
知识点角的平分线的性质
1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明
NAOC=NBOC的依据是()
A.SSS
B.ASA
C.AAS
D.角的平分线上的点到角的两边的距离相等
2.已知EF是ZkEBC的角平分线,FD1EB于点D,且FD=3cm,则点F到
EC的距离是()
A.2cmB.3cmC.4cmD.6cm
3.(2024邹平期末)在正方形网格中,ZAOB的位置如图所示,到NA0B
两边距离相等的点应是()
第1页共14页
4.如图所示,OP平分NMON,PA±ON于点A,点Q是射线0M上的一个动
点,若PA=2,则PQ的最小值为()
A.1B.2
5.如图所示,己知在AABC中,CD是边AB上的高,BE平分NABC,交CD
于点E,BC=10,DE=4,则ABCE的面积等于()
A.16B.20C.28D.40
6.如图所示,BD是NABC的平分线,AB=BC,点P在BD上,PM±AD,PN±
CD,垂足分别是M,N.求证:PM=PN.
第2页共14页
能力提升训练
7.(2024临沂期末)如图所示,在四边形ABCD中,NA=90°,AD=4,连接
BD,BD±CD,ZADB=ZC.若P是BC边上一动点,则DP长的最小值为
()
A.2B.2V2C.4D.4V2
8.(2024商丘期末)如图所示,在平面直角义标系中,以0为圆心,适当
长为半径画弧,交x轴负半轴于点M,交y轴负半轴于点N,再分别以点
M,N为圆心,大于的长为半径画弧,两弧在第三象限交于点P.若点
P的坐标为(a,b),则a与b的数量关系为()
A.a+b=0B.a+b>0C.a-b=0D.a-b>0
9.如图所示,AI,BI,CI分别平分NBAC,ZABC,ZACB,ID±BC,AABC
的周长为18,ID=3,则AABC的面积为()
A.18B.30C.24D.27
第3页共14页
2.如图所示,在4ABC中,点0是4ABC内一点,且点0到4ABC三边的
距离相等,若NA=70°,则NBOC的度数为()
A.35°B.125°C.55°D.135°
3.如图所示,点E是NAPB内的一点,EC_LPA于点C,ED1PB于点
D,CE=ED,点F在PA上,ZAPB=60°,ZPEF=15°,则NCFE的度数
为______
4.如图所示,在Z\ABC中,ZC=90°,DE1AB.若CD=3,AB=示,AABD的
面积为15,AD是NBAC的平分线吗?请说明理由.
能力提升训练
5.(2024滨州期末)如图所示,AABC两个外角的平分线BD与CE相交
于点P,PN1AC于点N,PM±AB于点M,且BD〃AC,小明同学得出了下列
第5页共14页
结论:①PM=PN;②点P在NCAB的平分线上;③NCPB=90°-NA;④
AB=CB.其中错误的个数为()
A.1B.2C.3D.4
6.如图所示,ZB=ZC=90°,E是BC的中点,DE平分NADC,ZCED=
35°,则NEAB二
D.____C
7.如图所示,已知NADC+NABO180。,DC=BC,求证:点C在NDAB点平
分线上.
8.如图①所示,在AABC中,AD是NBAC的平分线,P是AD上一点,PE
〃AB交BC于点E,PF〃AC交BC于点F.
⑴求证:点D到PE的距离与点D到PF的距离相等.
第6页共14页
⑵如图②所示,若点P在AD的延长线上,其他条件不变,猜想⑴中的
结论还成立吗?请证明你的猜想.
①②
参考答案
第1课时角的平分线的性质
基础知识训练
知识点角的平分线的性质
1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明
NAOC=NBOC的依据是(A)
A.SSS
B.ASA
C.AAS
D.角的平分线上的点到角的两边的距离相等
2.已知EF是4EBC的角平分线,FD1EB于点D,且FD=3cm,则点F到
EC的距离是(B:)
A.2cmB.3cmC.4cmD.6cm
第7页共14页
3.(2024邹平期末)在正方形网格中,ZA0B的位置如图所示,到NA0B
两边距离相等的点应是(A)
A.M点B.N点C.P点D.Q点
4.如图所示,0P平分NMON,PA10N于点A,点Q是射线0M上的一个动
点,若PA=2,则PQ的最小值为(B)
AuN
A.1B.2C.3D.4
5.如图所示,已知在AABC中,CD是边AB上的高,BE平分NABC,交CD
于点E,BC=10,DEM,则aBCE的面积等于(B)
A.16B.20C.28D.40
6.如图所示,BD是/ABC的平分线,AB=BC,点P在BD上,PM±AD,PN±
CD,垂足分别是M,N.求证:PMA=PN.
证明:・・・BD是NABC的平分线,・・・NABD=NCBD.
第8页共14页
(AB=CB,
在AABD和△CBD在ZABD=ZCBD,
[BD=BD,
.-.△ABD^ACBD(SAS),AZADB=ZCDB,ADP平分NADC.
VPM±AD,PN±CD,APM=PN.
能力提升训练
7.(2024临沂期末)如图所示,在四边形ABCD中,NA=90°,AD=4,连接
BD,BD1CD,ZADB=ZC.若P是BC边上一动点,则DP长的最小值为
(C)
A.2B.2^2C.4D.4^2
8.(2024商丘期末)如图所示,在平面直角义标系中,以0为圆心,适当
长为半径画弧,交x轴负半轴于点M,交y轴负半轴于点N,再分别以点
M,N为圆心,大于的长为半径画弧,两弧在第三象限交于点P.若点
P的坐标为(a,b),则a与b的数量关系为(C)
A.a+b=0B.a+b>0C.a-b=0D.a-b>0
9.如图所示,AI,BI,CI分别平分NBAC,ZABC,ZACB,ID±BC,AABC
的周长为18,ID=3,则4ABC的面积为(D)
第9页共14页
A
A.18B.30C.24D.27
10.如图所示,△ABC的角平分线AD交BC于点D,BD:DC=2:1.若AC=3
cm,贝I」AB=6cm.
11.如图所示,NCAB和NCBA的平分线AF,BD相交于点P,ZC=60c.
求证:PD=PF.
证明:如图所示,过点P作PE±AB,PG1AC,PII1BC.
VAF,BD分别平分NCAB和NCBA,JPE=PG,PE=PH,.,.PH=PG.
VPH±BC,PG±AC,AZPGC=ZPHC=90°,
AZGPH=360°-90c-90°-60°=120°.
VAF,BD分别平分/CAB和NCBA,
,ZPAB=iZGAB,ZPBA^ZCBA,
22
AZAPB=180°-(ZPAB+ZPBA)=180°-6/CAB十三NCBA)
22
二180°彳(1800-ZC)=120°,
ZGPH=ZAPB=12Ci°=ZDPF,/.ZDPG=ZFPH.
第10页共14页
(ZPGD=ZPHF=90°,
在4PDG和Z\PFH在\PG=PH,
(ZDPG=NFPH,
,△PDGg△PFH(ASA),JPD=PF.
第2课忖角的平分线的判定
基础知识训练
知识点角的平分线的判定及应用
1.在如图所示的一块三角形的草坪上建一凉亭供大家休息,要使凉亭
到草坪三条边的距离相等,凉亭的位置应选在(D)
A.AABC三条中线的交点B.AABC三边的中垂线的交点
C.AABC三条高所在直线的交点D.AABC三条角平分线的交点
2.如图所示,在AABC中,点()是AABC内一点,且点()至Ij/\ABC三边的
距离相等,若NA=7。°,则NB0C的度数为(B)
A.35°B.125°C.55°D.135°
3.如图所示,点E是NAPB内的一点,EC_LPA于点C,ED1PB于点
D,CE=ED,点F在PA上,ZAPB=60°,NPEF=15°,则NCFE的度数为
45°.
第11页共14页
4.如图所示,在Z\ABC中,ZC=90°,DE±AB.若CD=3,AB=10,AABD的
面积为15,AD是NBAC的平分线吗?请说明理由.
解:AD是NBAC的平分线.理由如下:
VAB=10,AABD的面积为15,DE1AB,
・15x2
・・DnpE=-----二3o.
10
VCD=3,ADE=CD.
VZC=90°,DE±AB,
.・.AD是NBAC的平分线.
能力提升训练
5.(2024滨州期末)如图所示,AABC两个外角的平分线BD与CE相交
于点P,PN1AC于点N,PM1AB于点M,且BD〃AC,小明同学得出了下列
结论:①PM=PN;②点P在NCAB的平分线上;③NCPB=90。-/A;④
AB二CB.其中错误的个数为(A)
A.1B.2C.3D.4
6.如图所示,ZB=ZC=90°,E是BC的中点,DE平分NADC,ZCED=
35°,则NEAB=35°.
D.____C
第12页共14页
7.如图所示,已知NADC+NABO180。,DC=BC.求证:点C在NDAB的平
分线上.
证明:如图所示,过点C作CE±AD于点E,CF±AB于点F.
VZADC+ZABC=180°,
ZADC+ZEDC=180°,
JZEDC=ZABC.
在aCDE和△CBF中,
ZCED=ZCFB=90°,
Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年财经新闻解读股市分析与经济趋势练习题
- 2026年法律法规常识法律基础与案例分析题库
- 2026年软件开发与编程技术实践试题
- 2026年金融科技基础知识点题库及解析
- 2026年机械设计与制造技术笔试题目
- 2026年电子商务运营策略题库及答案详解
- 2026年经济专业职称考试宏观经济政策分析题目库
- 2026年人力资源规划与招聘计划制定试题
- 2026年人力资源岗面试招聘项目复盘
- 2026年旅游管理与酒店服务知识测试题
- 通信管道施工质量控制方案
- 仁爱科普版(2024)八年级上册英语Unit1~Unit6单元话题作文练习题(含答案+范文)
- 2025天津市水务规划勘测设计有限公司招聘18人笔试历年参考题库附带答案详解
- 安徽宁马投资有限责任公司2025年招聘派遣制工作人员考试笔试模拟试题及答案解析
- 2024-2025学年云南省昆明市五华区高一上学期期末质量监测历史试题(解析版)
- 建筑坍塌应急救援规程
- 胰腺常见囊性肿瘤的CT诊断
- 房屋尾款交付合同(标准版)
- 检测设备集成优化方案
- 2025数据中心液冷系统技术规程
- 2021-2025年河南省中考英语试题分类汇编:短文选词填空(学生版)
评论
0/150
提交评论