湖北省孝感市高级中学2026届数学高一上期末达标检测试题含解析_第1页
湖北省孝感市高级中学2026届数学高一上期末达标检测试题含解析_第2页
湖北省孝感市高级中学2026届数学高一上期末达标检测试题含解析_第3页
湖北省孝感市高级中学2026届数学高一上期末达标检测试题含解析_第4页
湖北省孝感市高级中学2026届数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省孝感市高级中学2026届数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.2.已知函数的图象如图所示,则函数与在同一直角坐标系中的图象是A. B.C. D.3.A B.C.1 D.4.一个球的表面积是,那么这个球的体积为A. B.C. D.5.设,,则A. B.C. D.6.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)7.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.8.下列函数中,图象的一部分如图所示的是()A. B.C. D.9.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件10.函数在区间上的最小值是A. B.0C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间,上恒有则实数的取值范围是_____.12.已知函数和函数的图像相交于三点,则的面积为__________.13.设函数,若互不相等的实数、、满足,则的取值范围是_________14.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______16.集合的子集个数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象过点,且其相邻两条对称轴之间的距离为,(1)求实数的值及的单调递增区间;(2)若,求的值域18.计算:(1);(2)已知,求.19.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形20.如图,正方形ABCD所在平面与半圆孤所在平面垂直,M是上异于C,D的点(1)证明:平面AMD⊥平面BMC;(2)若正方形ABCD边长为1,求四棱锥M﹣ABCD体积的最大值21.已知命题,且,命题,且,(1)若,求实数a的取值范围;(2)若p是q的充分条件,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键2、C【解析】根据幂函数的图象和性质,可得a∈(0,1),再由指数函数和对数函数的图象和性质,可得答案【详解】由已知中函数y=xa(a∈R)的图象可知:a∈(0,1),故函数y=a﹣x为增函数与y=logax为减函数,故选C【点睛】本题考查知识点是幂函数的图象和性质,指数函数和对数函数的图象和性质,难度不大,属于基础题3、A【解析】由题意可得:本题选择A选项.4、B【解析】先求球半径,再求球体积.【详解】因为,所以,选B.【点睛】本题考查球表面积与体积,考查基本求解能力,属基础题.5、D【解析】利用对数运算法则即可得出【详解】,,,,则.故选D.【点睛】本题考查了对数的运算法则,考查了计算能力,属于基础题6、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.7、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A8、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D9、C【解析】根据奇函数的性质及命题充分必要性的概念直接判断.【详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.10、A【解析】函数,可得的对称轴为,利用单调性可得结果【详解】函数,其对称轴为,在区间内部,因为抛物线的图象开口向上,所以当时,在区间上取得最小值,其最小值为,故选A【点睛】本题考查二次函数的最值,注意分析的对称轴,属于基础题.若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.12、【解析】解出三点坐标,即可求得三角形面积.【详解】由题:,,所以,,所以,.故答案为:13、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.14、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:15、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题16、32【解析】由n个元素组成的集合,集合的子集个数为个.【详解】解:由题意得,则A的子集个数为故答案为:32.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=1;单调增区间;(2)[0,3]【解析】解:(1)由题意可知,,,所以所以,解得:,所以的单调递增区间为;(2)因为所以所以,所以,所以的值域为考点:正弦函数的单调性,函数的值域点评:解本题的关键是由函数图象上的点和函数的周期确定函数的解析式,利用正弦函数的单调区间求出函数的单调增区间,利用角的范围求出函数的值域18、(1);(2).【解析】(1)根据对数的运算法则和对数恒等式,即可求解;(2)根据同角三角函数关系,由已知可得,代入所求式子,即可求解.【详解】(1)原式;(2)∵∴∴.19、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程20、(1)证明见解析;(2).【解析】(1)先证明BC⊥平面CMD,推出DM⊥BC,然后证明DM⊥平面BMC,由线面垂直推出面面垂直;(2)当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,相应数值代入棱锥的体积公式即可得解.【详解】(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD,∵BC⊥CD,BC在平面ABCD内,∴BC⊥平面CMD,故DM⊥BC,又DM⊥CM,BC∩CM=C,∴DM⊥平面BMC,又DM在平面AMD内,∴平面AMD⊥平面BMC;(2)依题意,当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,因为正方形边长为1,所以半圆的半径为,此时四棱锥M﹣ABCD的体积为,故四棱锥M﹣ABCD体积的最大值为【点睛】本题考查面面垂直的证明,需转化为证明线面垂直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论