初中数学试卷分类汇编七年级苏科下册期末(附答案)_第1页
初中数学试卷分类汇编七年级苏科下册期末(附答案)_第2页
初中数学试卷分类汇编七年级苏科下册期末(附答案)_第3页
初中数学试卷分类汇编七年级苏科下册期末(附答案)_第4页
初中数学试卷分类汇编七年级苏科下册期末(附答案)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学试卷分类汇编七年级苏科下册期末(附答案)一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.综合题。(1)若2x+5y﹣3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.3.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.二、平面图形的认识(二)压轴解答题4.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.

(1)若∠H=120°,则∠H的4系补周角的度数为________;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).5.在中,为直线AC上一点,E为直线AB上一点,(1)如图1,当D在AC上,E在AB上时,求证;(2)如图2,当D在CA的延长线上,E在BA的延长线上时,点G在EF上,连接AG,且,求证:(3)如图3,在(2)的条件下,连接BG,当BG平分时,将沿着AG折至探究与的数量关系.6.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求值.三、整式乘法与因式分解易错压轴解答题7.阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即.例如:是的一种形式的配方,是的另一种形式的配方请根据阅读材料解决下列问题:(1)比照上面的例子,写出的两种不同形式的配方;(2)已知,求的值;(3)已知,求的值.8.阅读下面材料:通过整式运算一章的学习,我们发现要验证一个结论的正确性可以有两种方法:例如:要验证结论方法1:几何图形验证:如下图,我们可以将一个边长为(a+b)的正方形上裁去一个边长为(a-b)的小正方形则剩余图形的面积为4ab,验证该结论正确。方法2:代数法验证:等式左边=,所以,左边=右边,结论成立。观察下列各式:(1)按规律,请写出第n个等式________;(2)试分别用两种方法验证这个结论的正确性.9.乘法公式的探究及应用.(1)如图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式:________(用式子表达)(4)运用你所得到的公式,计算下列各题:①,②四、二元一次方程组易错压轴解答题10.在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“演化点”.例如,点的“演化点”为,即.(1)已知点的“演化点”是,则的坐标为________;(2)已知点,且点的“演化点”是,则的面积为________;(3)己知,,,,且点的“演化点”为,当时,________.11.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.12.王大厨去超市采购鸡蛋超市里鸡蛋有A,B两种包装,其中各鸡蛋品质相同,且只能整盒购买,商品信息如下:A包装盒B包装盒每盒鸡蛋个数(个)38每盒价格(元)511(1)若王大厨购买A包装x盒,B包装y盒①则共买鸡蛋________个,需付________元(用含x,y的代数式表示)②若王大厨买了AB两种包装共15盒,一共买到90个鸡蛋,请问王大厨花了多少钱?________(2)①若王大厨正好买了100个鸡蛋,则他最少需要花________元。②若王大厨恰好花了180元,则他最多可买到鸡蛋________个。五、一元一次不等式易错压轴解答题13.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)14.某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱类与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目演出的平均用时分别为5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多有多少个?15.郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师有1000元,他计划为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴===16÷8×3=6(3)解:=解析:(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴===16÷8×3=6(3)解:===∵,∴,∴原式=2×2+29=33.【解析】【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法、除法法则计算即可;(3)先利用完全平方公式和多项式乘多项式法则化简,再由可得,代入计算即可.2.(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b解析:(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,解得:a=±8,b=3,∴a+b=11或﹣5.【解析】【分析】(1)直接幂的乘方运算法则将原式变形进而求出答案;(2)直接利用幂的乘方运算法则将原式变形进而求出答案.3.(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣(13)﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(解析:(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(x+1)=3x﹣2x+2﹣3x﹣3=﹣2x﹣1(4)解:(m4)2+m5•m3+(﹣m)4•m4=m8+m8+m8=3m8【解析】【分析】(1)直接利用绝对值的性质以及结合零指数幂的性质和负整数指数幂的性质化简求出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则分别化简求出答案;(3)直接利用单项式乘以多项式运算法则化简求出答案;(4)直接利用幂的乘方运算法则化简求出答案.二、平面图形的认识(二)压轴解答题4.(1)60°(2)解:①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D,即∠BED=∠B+∠D,∵∠BED+3∠B=360°,∠D=60,∴,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.理由如下:若∠BPD是∠F的k系补周角,则∠F+k∠BPD=360°,∴k∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F,∴k∠BPD=∠ABF+∠CDF,又∵∠ABF=n∠ABE,∠CDF=n∠CDE,∴k∠BPD=n∠ABE+n∠CDE,∵∠BPD=∠PHD+∠PDH,∵AB//CD,PG平分∠ABE,PD平分∠CDE,∴∠PHD=∠ABH=,∠PDH=,∴(+)=n(∠ABE+∠CDE),∴k=2n.【解析】【解答】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠BED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.5.(1)∵∠ADE=∠B,∠A=∠A,且∠ADE+∠A+∠AED=180°,∠B+∠A+∠ACB=180°,∴∠AED=∠ACB=90°,∴DE⊥AB(2)∵∠ADE=∠B,∠DAE=∠BAC,∴∠AED=∠ACB=90°,∴∠EAG+∠AGE=90°①,∵∠EAG−∠D=45°,∴2∠EAG−∠D=90°②,∵∠D+∠F=90°③,∴②+③得:2∠EAG+∠F=180°④,④−①×2得:∠F−2∠AGE=0°,∴∠F=2∠AGE,(3)如图3,∵BG平分∠ABC,∴∠ABG=∠ABC,∵将△AGB沿着AG折至△AGH,∴∠H=∠ABG=∠ABC,∵∠ADE=∠B,∴∠ADE=2∠H,且∠ADE=∠H+∠DGH,∴∠H=∠DGH,∴∠ADE=2∠DGH,∵∠F+∠CDF=90°,∴∠F+2∠HGD=90°.【解析】【分析】(1)通过三角形内角和定理,可得∠AED=∠ACB=90°,可得结论;(2)由直角三角形的性质和三角形内角和定理可得∠EAG+∠AGE=90°①,∠D+∠F=90°③,且2∠EAG−∠D=90°②,可以组成方程组,可得结论;(3)由角平分线的性质和折叠的性质可得∠ADE=2∠H,由外角性质可得∠ADE=2∠DGH,由直角三角形的性质可得∠F+2∠HGD=90°.6.(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.【解析】【分析】(1)过C作CD∥PQ,依据平行线的性质,即可得出∠C=∠1+∠2;(2)根据(1)中的结论可得,∠C=∠MEC+∠PDC=90°,再根据对顶角相等即可得出结论;(3)设∠CEG=∠CEM=x,得到∠GEN=180°−2x,再根据(1)中的结论可得∠CDP=90°−∠CEM=90°−x,再根据对顶角相等即可得出∠BDF=90°−x,据此可得的值.三、整式乘法与因式分解易错压轴解答题7.(1)解:;;(2)解:∵,∴(x-2)2+(y+3)2=0,∴,解得,∴;(3)解:==∵,∴,解析:(1)解:;;(2)解:∵,∴,∴,解得,∴;(3)解:==∵,∴,∴,解得,∴.【解析】【分析】(1)直接利用完全平方公式并参照题干即可得出答案;(2)先对已知进行变形,然后利用平方的非负性求出x,y的值,再代入求值即可;(3)首先将原式利用完全平方公式分解因式,然后利用平方的非负性求出a,b,c的值,进而可得出答案.8.(1)(2)解:等式左边=n2+2n+1-n2=2n+1=右所以,左边=右边,结论成立。【解析】【解答】.【分析】根据材料示意,运用完全平方公式化简代数式,并运用几何图形表示出代数式的解析:(1)(2)解:等式左边=n2+2n+1-n2=2n+1=右所以,左边=右边,结论成立。【解析】【解答】.【分析】根据材料示意,运用完全平方公式化简代数式,并运用几何图形表示出代数式的几何意义。9.(1)a2﹣b2(2)a﹣b;a+b;(a+b)(a﹣b)(3)(a+b)(a﹣b)=a2﹣b2(4)解:①(2m+n﹣p)(2m﹣n+p)=[2m+(n﹣p)][2解析:(1)a2﹣b2(2)a﹣b;a+b;(a+b)(a﹣b)(3)(a+b)(a﹣b)=a2﹣b2(4)解:①(2m+n﹣p)(2m﹣n+p)=[2m+(n﹣p)][2m﹣(n﹣p)]=4m2﹣(n﹣p)2=4m2﹣n2﹣p2+2np.②10.3×9.7=(10+0.3)(10﹣0.3)=100﹣0.09=99.91;【解析】【解答】解:(1)利用大正方形面积减去小正方形面积即可求出:a2﹣b2;⑵它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);⑶根据题意得出:(a+b)(a﹣b)=a2﹣b2;【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.四、二元一次方程组易错压轴解答题10.(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知:{2解析:(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知:,解得:∴Q点坐标为(0,4)∴故答案为:20;(3)由题意可知:AD=3,OC=5的坐标为,即点的坐标为当点位于y轴正半轴时,,∴或(此情况不合题意,舍去)又∵∴,解得:(舍去)当点位于y轴正半轴时,,∴又∵∴,解得:,即故答案为:.【分析】(1)根据题意a=3,x=-1,y=5时,求点的坐标;(2)根据题意列方程组求点Q的坐标,然后结合坐标系中点的位置,利用割补法求三角形面积;(3)根据题意求出,然后分点在y轴正半轴和负半轴两种情况讨论,利用三角形面积列方程求解.11.(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:{3x+2y=212x+4y=22,解得:{x=5y=3,答:1辆大货车和1辆小货车一次可以分别运货解析:(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨、3吨。(2)解:设安排m辆大货车,则小货车需要(10-m)辆,根据题意,得:5m+3(10-m)≥35,解得:m≥2.5,所以至少需要安排3辆大货车(3)解:设租大货车a辆,小货车b辆,由题意得5a+3b=23,∵a,b为非负整数,∴或,∴共有2中运输方案,方案1:租用4辆大货车,1辆小货车;方案2:租用1辆大货车,6辆小货车.方案1的租金:300×4+200=1400元,方案2的租金:300+200×6=1500元,∵1400<1500,∴最少租金为1400元。【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据3辆大货车吨数+2辆小货车吨数=21,2辆大货车吨数+4辆小货车吨数=22,列出方程组,求出x、y的值即可.(2)设安排m辆大货车,则小货车需要(10-m)辆,根据一次运货不低于35吨,列出不等式,求出解集即可.(3)设租大货车a辆,小货车b辆,可得5a+3b=23,求出其非负整数解,即得运输方案,然后分别求出其租金比较即可.12.(1)(3x+8y);(5x+11y);解:可得方程组:

{x+y=153x+8y=90解得

{x=6y=9∴5x+11y=5×6+11×9=129(元)答:王大厨付了129元(2解析:(1)(3x+8y);(5x+11y);解:可得方程组:

解得

∴5x+11y=5×6+11×9=129(元)答:王大厨付了129元(2)141;129【解析】【解答】解:(3)①∵A包装每个鸡蛋的价格=,B包装每个鸡蛋的价格=,∵<,∴A包装数量越少,花的钱越少;设需花钱W元,则W=5x+11y,3x+8y=100,∴y=,当x=0、1、2、3时,y不为整数,x=4时,y=11,∴W=5x+11y=4×5+11×11=141(元);②

设最多买鸡蛋Z个,Z=3x+8y,

5x+11y=180,由题(1)的分析可知,B包装的鸡蛋便宜,A包装的鸡蛋较贵,∴y=,当x=0、1、2时,y不为整数,当x=3时,y=15,∴Z=3x+8y=3×3+8×15=129(个)【分析】(1)

设王大厨购买A包装x盒,B包装y盒

,则:购买鸡蛋的总数量=A包装盒数量×每盒A包装盒鸡蛋的个数+B包装盒数量×每盒B包装盒鸡蛋的个数;需付金额=A包装盒数量×A包装盒鸡蛋的价格+B包装盒数量×B包装盒鸡蛋的价格;(2)根据两种包装盒的数量之和为15盒,购买鸡蛋的总数量=A包装盒数量×每盒A包装盒鸡蛋的个数+B包装盒数量×每盒B包装盒鸡蛋的个数,分别列方程组成方程组,求出x,y,再把x、y代入题(1)的金额表达式即可求出王大厨花了多少钱;(3)先分别求出A、B包装每个鸡蛋的价格,比较价格,①先确定数量,因为x越小,花钱越少,x从0开始试值,一直试到y为整数为止。求出x、y,则所需花费可求。②先确定金额,同样因为x越小,花钱越少,x从0开始试值,一直试到y为整数为止。求出x、y,则鸡蛋的数量可求。五、一元一次不等式易错压轴解答题13.(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:{7x+2y=805x+6y=80解得:{x=10y=5答:购进A种纪念品每件需10元、B种纪念品每件需5解析:(1)解:设购进A种纪念品每件需x元、B种纪念品每件需y元,根据题意得:解得:答:购进A种纪念品每件需10元、B种纪念品每件需5元;(2)解:设购进A种纪念品t件,则购进B种纪念品(100﹣t)件,由题意得:750≤5t+500≤764解得∵t为正整数∴t=50,51,52∴有三种方案.第一种方案:购进A种纪念品50件,B种纪念品50件;第二种方案:购进A种纪念品51件,B种纪念品50件;第三种方案:购进A种纪念品52件,B种纪念品48件;(3)解:第一种方案商家可获利:w=50a+50(5﹣a)=250(元);第二种方案商家可获利:w=51a+49(5﹣a)=245+2a(元);第三种方案商家可获利:w=52a+48(5﹣a)=240+4a(元).当a=2.5时,三种方案获利相同;当0≤a<2.5时,方案一获利最多;当2.5<a≤5时,方案三获利最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论