版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市一中2026届数学高二上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图2.数列,,,,…,是其第()项A.17 B.18C.19 D.203.已知函数,则()A. B.C. D.4.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或5.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.06.以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题7.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.8.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,,,点P在线段EF上.给出下列命题:①存在点P,使得直线平面ACF;②存在点P,使得直线平面ACF;③直线DP与平面ABCD所成角的正弦值的取值范围是;④三棱锥的外接球被平面ACF所截得的截面面积是.其中所有真命题的序号()A.①③ B.①④C.①②④ D.①③④9.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.10.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.211.已知函数,则函数在点处的切线方程为()A. B.C. D.12.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.如图,某建筑物的高度,一架无人机上的仪器观测到建筑物顶部的仰角为,地面某处的俯角为,且,则此无人机距离地面的高度为________15.已知点是椭圆上任意一点,则点到直线距离的最小值为______16.已知数列的前项和为,且满足,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.18.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由19.(12分)已知动点M到定点和的距离之和为4(1)求动点轨迹的方程;(2)若直线交椭圆于两个不同的点A,B,O是坐标原点,求的面积20.(12分)已知点是椭圆E:一点,且椭圆的离心率为.(1)求此椭圆E方程;(2)设椭圆的左顶点为A,过点A向上作一射线交椭圆E于点B,以AB为边作矩形ABCD,使得对边CD经过椭圆中心O.(i)求矩形ABCD面积的最大值;(ii)问:矩形ABCD能否为正方形?若能,求出直线AB的方程;若不能,请说明理由.21.(12分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?22.(10分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A2、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.3、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.4、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.5、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B6、A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定义判断;C:根据回归直线必过样本中心点进行判断;D:根据“且”命题真假关系进行判断.【详解】对于A,方差和标准差都是刻画样本数据分散程度的统计量,故A正确;对于B,若为数据,2,3,,的中位数,需先将数据从小到大排列,此时数据里面之间的数顺序可能发生变化,则为排序后的第1010个数据的值,这个数不一定是原来的,故B错误;对于C,回归直线一定经过样本点的中心,,故C错误;对于D,若“”为假命题,则、中至少有一个是假命题,故D错误;故选:A7、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:8、D【解析】当点P是线段EF中点时判断①;假定存在点P,使得直线平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出外接圆面积判断④作答.【详解】取EF中点G,连DG,令,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则且,即四边形DGFO是平行四边形,即有,而平面ACF,平面ACF,于是得平面ACF,当点P与G重合时,直线平面ACF,①正确;假定存在点P,使得直线平面ACF,而平面ACF,则,又,从而有,在中,,DG是直角边EF上中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面平面,平面平面,则线段EF上的动点P在平面上的射影在直线BD上,于是得是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,,,而,则,当P与E重合时,,,因此,,③正确;因平面平面,平面平面,,平面,则平面,,在中,,显然有,,由正弦定理得外接圆直径,,三棱锥的外接球被平面ACF所截得的截面是的外接圆,其面积为,④正确,所以所给命题中正确命题的序号是①③④.故选:D【点睛】结论点睛:两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.9、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.10、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B11、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C12、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【详解】根据题意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案为200【点睛】本题考查了解三角形的应用问题,考查正弦定理,三角形内角和问题,考查转化化归能力,是基础题15、【解析】求椭圆上平行于的直线方程,利用平行线的距离公式求椭圆上点到直线的最小值.【详解】设与椭圆相切,且平行于的直线为,联立椭圆整理可得:,则,∴,又两平行线的距离,∴到直线距离的最小值为.故答案为:.16、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得:1--0+减减极小值增由上表可知,无极大值.;【小问2详解】证明:,即证;∵,则,故只需证,即证令,,得,得,∴在上递增,在上递减∴,∴,∴.18、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.19、(1);(2).【解析】(1)利用椭圆的定义即求;(2)由直线方程与椭圆方程联立,可解得点,再利用三角形面积公式即求.【小问1详解】∵动点M到定点和的距离之和为4,∴动点M的轨迹是以和为焦点的椭圆,可设方程为,则,故动点轨迹的方程为;【小问2详解】由可得,∴或,∴,又O是坐标原点,∴的面积为.20、(1);(2)(i);(ii).【解析】(1)根据给定条件列出关于a,b的方程组,解方程组代入得解.(2)(i)设直线AB方程,与椭圆方程联立求出线段AB长,再求出原点O到直线AB距离列出矩形面积求解即可;(ii)由(i)及列出方程,由方程解的情况即可判断计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为:.【小问2详解】(i)由(1)知,,设直线AB的斜率为,则直线AB的方程为:,由消去y并整理得:,点的横坐标,则点的横坐标有:,解得,则有,因矩形的边CD过原点O,则,因此,矩形的面积,当且仅当,即时取“=”,所以矩形ABCD面积的最大值是.(ii)假定矩形ABCD能成为正方形,则,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成为正方形,此时,直线AB的方程为.【点睛】思路点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率或点的横、纵坐标等.而目标函数的最值可以通过二次函数或基本不等式或导数等求得.21、(1)(2)是,【解析】(1)由抛物线方程求出其焦点坐标,结合椭圆的几何性质列出,的方程,解方程求,由此可得椭圆方程,(2)联立直线椭圆椭圆方程,求出弦的长和其中垂线方程,再计算,由此完成证明.【小问1详解】抛物线的交点坐标为(1,0),,又,又,∴,椭圆的标准方程为.【小问2详解】设直线的斜率为,则直线的方程为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级下册英语月考考试卷带答案解析
- 临夏回族自治州2024年甘肃省临夏州引进急需紧缺人才376人(第二批)笔试历年参考题库典型考点附带答案详解(3卷合一)
- 《GBT 34835-2017 电气安全 与信息技术和通信技术网络连接设备的接口分类》专题研究报告
- 医院行政部门岗位的考核重点解析
- 应急心理疏导员面试题集
- 面试题库诚通控股投资发展部经理岗位
- 中国移动通信技术专员面试题目全解
- 零售连锁企业市场拓展经理的招聘考试题目及答案参考
- 法务专员面试题及合同审核参考答案
- 2025年区域气候变化适应项目可行性研究报告
- 2025北京热力热源分公司招聘10人参考笔试题库及答案解析
- 2025年湖南省法院系统招聘74名聘用制书记员笔试参考题库附答案
- 2025广西机电职业技术学院招聘教职人员控制数人员79人备考题库及答案解析(夺冠)
- 2026届高考政治一轮复习:必修2 经济与社会 必背主干知识点清单
- 大学生校园创新创业计划书
- 护士职业压力管理与情绪调节策略
- 贵州国企招聘:2025贵州凉都能源有限责任公司招聘10人备考题库及答案详解(必刷)
- 招标人主体责任履行指引
- 2025-2026学年北师大版五年级数学上册(全册)知识点梳理归纳
- 2021年广东省广州市英语中考试卷(含答案)
- 我的新式汽车(课件)-人美版(北京)(2024)美术二年级上册
评论
0/150
提交评论