福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题含解析_第1页
福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题含解析_第2页
福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题含解析_第3页
福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题含解析_第4页
福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市龙岩第一中学2026届高二数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设斜率为2的直线l过抛物线()的焦点F,且和y轴交于点A,若(O为坐标原点)的面积为4,则抛物线方程为()A. B.C. D.2.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,3.在平面直角坐标系中,线段的两端点,分别在轴正半轴和轴正半轴上滑动,若圆上存在点是线段的中点,则线段长度的最小值为()A.4 B.6C.8 D.104.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.5.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种6.已知直线在x轴和y轴上的截距相等,则a的值是()A或1 B.或C. D.17.已知数列满足,则()A.32 B.C.1320 D.8.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.9.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.10.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能11.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.12.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点到直线的距离为________.14.已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________15.双曲线的离心率为__________16.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值18.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.19.(12分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?20.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程21.(12分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求22.(10分)已知,,(1)若,为真命题,为假命题,求实数x的取值范围;(2)若是的充分不必要条件,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线的方程写出焦点坐标,求出直线的方程、点的坐标,最后根据三角形面积公式进行求解即可.【详解】抛物线的焦点的坐标为,所以直线的方程为:,令,解得,因此点的坐标为:,因为面积为4,所以有,即,,因此抛物线的方程为.故选:B.2、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.3、C【解析】首先求点的轨迹,将问题转化为两圆有交点,即根据两圆的位置关系,求参数的取值范围.【详解】设,,的中点为,则,故点的轨迹是以原点为圆心,为半径的圆,问题转化为圆与圆有交点,所以,,即,解得:,所以线段长度的最小值为.故选:C4、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.5、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.6、A【解析】分截距都为零和都不为零讨论即可.【详解】当截距都为零时,直线过原点,;当截距不为零时,,.综上:或.故选:A.7、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A8、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题9、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.10、A【解析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.11、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷12、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.14、①.;②.60.【解析】先根据并结合等差数列的定义求出;然后讨论n的取值范围,讨论出分别取1,2,3,4,5的情况,进而求出.【详解】由题意,,n=1时,,满足,时,,于是,,因为,所以.所以,是1为首项,2为公差的等差数列,所以.若,即时,,若,则时,,若,则时,,若,则时,,若,则或22时,,于是,.故答案为:2n-1;60.15、【解析】∵双曲线的方程为∴,∴∴故答案为16、1【解析】利用空间向量求点到平面的距离即可.【详解】,,∴则点P到平面的距离为.故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)待定系数法求椭圆的方程;(2)设直线的方程为,,,用“设而不求法”表示出三角形OAB的面积.令转化为关于t的函数,利用函数求最值.【详解】(1)依题意得:,∴.方程的根为或.∵椭圆的离心率,∴,∴∴∴椭圆方程为.(2)设直线的方程为,,由,得,则,点到直线的距离为,.令,则..∵在单调递增,∴时.有最小值3.此时有最大值.∴面积的最大值为.18、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单调递减,所以,符合题意.若,所以在上单调递减,,符合题意.若,当时,,当时,,所以在上单调递减,在上单调递增,所以,不合题意.综上可知,a的取值范围为.【点睛】关键点点睛:本题考查了不等式恒成立问题,其关键是构造函数,通过讨论参数在不同取值范围时函数的单调性,求出函数的最值,解出参数的范围.必要时二次求导.19、(1)(2)答案见详解【解析】(1):把4名男生和2名女生编号后用列举法写出任选2名的所有基本事件,同时可得出,两人是一男一女的基本事件,计数后可计算概率;(2):求出两组数据的均值和方差,比较可得【小问1详解】设4名男生分别用A,B,C,D表示:2名女生分别用1,2表示.基本事件为:,,,,,,,,,,,,共15种,所以所求概率为;【小问2详解】A组数据的平均数,B组数据的平均数,A组数据的方差,B组数据的方差,所以选择A队.理由:A、B两队平均数相同,且,A组成绩波动小20、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:21、(1),(2)4【解析】(1)将M坐标代入方程即可;(2)联立直线l与抛物线方程得到A、B的横坐标,再利用焦半径公式求出即可.【小问1详解】将代入,得,解得,所以【小问2详解】由(1)得抛物线方程为,直线l的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论