版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省黄冈市黄梅县第二中学高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是和的等比中项,则圆锥曲线的离心率为()A. B.或2C. D.或2.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.43.函数的图像在点处的切线方程为()A. B.C. D.4.双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12 B.2或18C.18 D.25.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.56.已知长方体中,,,则直线与所成角的余弦值是()A. B.C. D.7.直线关于直线对称的直线方程为()A. B.C. D.8.函数的最小值为()A. B.1C.2 D.e9.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.51210.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃11.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.12.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项二、填空题:本题共4小题,每小题5分,共20分。13.函数,则函数在处切线的斜率为_______________.14.已知向量是直线l的一个方向向量,向量是平面的一个法向量,若直线平面,则实数m的值为______15.已知函数,有且只有一个零点,则实数的取值范围是_______.16.已知直线在两坐标轴上的截距分别为,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.18.(12分)如图,在梯形中,,,平面,四边形为矩形,点为线段的中点,且(1)求证:平面平面;(2)若平面与平面所成锐二面角的余弦值为,则三棱锥F-ABC的体积为多少?19.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求20.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.21.(12分)若是双曲线的两个焦点.(1)若双曲线上一点到它的一个焦点的距离等于10,求点到另一个焦点距离;(2)如图若是双曲线左支上一点,且,求的面积.22.(10分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等比中项的性质可得,分别计算曲线的离心率.【详解】由是和的等比中项,可得,当时,曲线方程为,该曲线为焦点在轴上的椭圆,离心率,当时,曲线方程为,该曲线为焦点在轴上的双曲线,离心率,故选:B.2、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.3、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题4、C【解析】利用双曲线的定义求.【详解】解:由双曲线定义可知:解得或(舍)∴点到的距离为18,故选:C.5、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、C【解析】建立空间直角坐标系,设直线与所成角为,由求解.【详解】∵长方体中,,,∴分别以,,为,,轴建立如图所示空间直角坐标系,,则,,,,所以,,设直线与所成角为,则,∴直线和夹角余弦值是.故选:C.7、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C8、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B9、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.10、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.11、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B12、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:14、-2【解析】由已知可得,即,计算即可得出结果.【详解】因为是直线的一个方向向量,是平面的一个法向量,且直线平面,所以,所以,解得.故答案为:-2.15、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:16、##【解析】根据截距定义,分别令,可得.【详解】由直线,令得,即令,得,即,故.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则有,即,取.设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为;(2)假设线段上存在点,使得二面角的余弦值.设,则,从而,,.设平面的法向量,则有,即,取.设平面的法向量,则有,即,取.,解得:或(舍),故存在点满足条件,为上靠近点的三等分点【点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.18、(1)证明见解析;(2)【解析】(1)先证线面垂直,再证面面垂直即可解决;(2)建立空间直角坐标系,以向量法去求平面与平面所成锐二面角的余弦值,列方程解得的长度,即可求得三棱锥F-ABC的体积.【小问1详解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,则平面平面【小问2详解】由(1)知,,两两垂直,以为坐标原点,分别以直线,,为轴、轴、轴建立空间直角坐标系因为,,所以,令则,,,所以,设为平面的一个法向量,由,得解得,取,则,又是平面的一个法向量.设平面与平面所成锐二面角为,则,即解之得,又,故即19、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得20、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方程为,即,圆的圆心到l的距离,则;综上,l为x=1或y=1.21、(1)(2)【解析】(1)利用双曲线定义,根据点到一个焦点的距离求点到另一个焦点的距离即可;(2)先根据定义得到,两边平方求得,即证,,再计算直角三角形面积即可.【小问1详解】是双曲线的两个焦点,则,点M到它的一个焦点的距离等于10,设点到另一个焦点的距离为,则由双曲线定义可知,,解得或(舍去)即点到另一个焦点的距离为;【小问2详解】P是双曲线左支上的点,则,则,而,所以,即,所以为直角三角形,,所以.22、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年会酒店协议价格合同
- 大米销售承包合同范本
- 山林土地租赁合同范本
- 广东临时保洁合同范本
- 房屋施工安全合同范本
- 承接草籽工程合同范本
- 设计心理学成功和失败案例教案
- 幼儿园小班《腊八节》教案
- 管理学计划教案
- 小学综合实践活动家务劳动主题教育班会小扫把动起来教案
- 商场活动服务合同范本
- DB31/T 1210-2020非居住物业管理服务规范
- 《家畜胚胎发育》课件
- T-CEIA ESD1007-2024 锂离子电池生产静电防护要求
- 物证技术学课件
- 农村个人土地承包合同模板
- 2025届北京市海淀区一零一中学数学七年级第一学期期末综合测试模拟试题含解析
- 初中道德与法治课中提升学生政治认同素养的策略研究
- 糖尿病的急救和护理
- 小学道德与法治-认识居民身份证教学课件设计
- 采购灭火器施工方案
评论
0/150
提交评论