七年级数学下学期名校期末压轴题模拟检测卷含解析_第1页
七年级数学下学期名校期末压轴题模拟检测卷含解析_第2页
七年级数学下学期名校期末压轴题模拟检测卷含解析_第3页
七年级数学下学期名校期末压轴题模拟检测卷含解析_第4页
七年级数学下学期名校期末压轴题模拟检测卷含解析_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.2.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.3.如图,已知,是的平分线.(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.4.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;(问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.5.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)6.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈

n次方”.(初步探究)(1)直接写出计算结果:2③=___,()⑤=___;(2)关于除方,下列说法错误的是___A.任何非零数的圈2次方都等于1;

B.对于任何正整数n,1ⓝ=1;C.3④=4③;

D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___;

5⑥=___;(-)⑩=___.(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;(3)算一算:÷(−)④×(−2)⑤−(−)⑥÷8.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,________,________,________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?9.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3.(1)仿照以上方法计算:=______;=_____.(2)若,写出满足题意的x的整数值______.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.10.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”.(1)分别判断数组和是否为“蹦蹦数组”;(2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请说明理由;(3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.11.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作aⓝ,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2③,(﹣)③.(深入思考)2④我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧12.在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题.(1)计算:;(2)若,则;(3)在数轴上,数的位置如下图所示,试化简:;(4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值.13.如图,已知点,,.(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示).14.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)15.如图1,点是第二象限内一点,轴于,且是轴正半轴上一点,是x轴负半轴上一点,且.(1)(),()(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点,求的度数:(注:三角形三个内角的和为)(3)如图3,当点在线段上运动时,作交于的平分线交于,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.16.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”.(1)在点,,中,原点的“距点”是_____(填字母);(2)已知点,点,过点作平行于轴的直线.①当时,直线上点的“距点”的坐标为_____;②若直线上存在点的“点”,求的取值范围.(3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围.17.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.18.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足.(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论.19.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值;(3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.20.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.21.新定义,若关于,的二元一次方程组①的解是,关于,的二元一次方程组②的解是,且满足,,则称方程组②的解是方程组①的模糊解.关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是________.22.已知,在平面直角坐标系中,三角形三个顶点的坐标分别为,,,轴,且、满足.(1)则______;______;______;(2)如图1,在轴上是否存在点,使三角形的面积等于三角形的面积?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,连接交于点,点在轴上,若三角形的面积小于三角形的面积,直接写出的取值范围是______.23.如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动.过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足.当时,求的值.24.如图,在平面直角坐标系中,已知,点,,,,,满足,(1)直接写出点,,的坐标及的面积;(2)如图2,过点作直线,已知是上的一点,且,求的取值范围;(3)如图3,是线段上一点,①求,之间的关系;②点为点关于轴的对称点,已知,求点的坐标.25.如图,在平面直角坐标系中,轴,轴,且,动点从点出发,以每秒的速度,沿路线向点运动;动点从点出发,以每秒的速度,沿路线向点运动.若两点同时出发,其中一点到达终点时,运动停止.(Ⅰ)直接写出三个点的坐标;(Ⅱ)设两点运动的时间为秒,用含的式子表示运动过程中三角形的面积;(Ⅲ)当三角形的面积的范围小于16时,求运动的时间的范围.26.已知关于x、y的二元一次方程(1)若方程组的解x、y满足,求a的取值范围;(2)求代数式的值.27.阅读理解:定义:,,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点.例如,在图1中,点是的2倍点,但点不是的2倍点.(1)特值尝试.①若,图1中,点______是的2倍点.(填或)②若,如图2,,为数轴上两个点,点表示的数是,点表示的数是4,数______表示的点是的3倍点.(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值.(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围.(不必写出解答过程)28.对,定义一种新的运算,规定:(其中).已知,.(1)求、的值;(2)若,解不等式组.29.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.30.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,,,其中a、b满足关系式:.______,______,的面积为______;如图2,石于点C,点P是线段OC上一点,连接BP,延长BP交AC于点当时,求证:BP平分;提示:三角形三个内角和等于如图3,若,点E是点A与点B之间上一点连接CE,且CB平分问与有什么数量关系?请写出它们之间的数量关系并请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(3,4);(2)①t=时,AP所在直线垂直于x轴;②当t为或时,S=S△APE.【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;②分和两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)①要使AP所在直线垂直于x轴.如图1,只需要Px=Ax,则t+3=3t,解得:,所以即时,AP所在直线垂直于x轴;②由题意知,OH=7,所以当时,点D与点H重合,所以要分以下两种情况讨论:情况一:当时,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情况二:当时,如图2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,综上所述,当t为或时,S=S△APE.【点睛】本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.2.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.3.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据平行线的性质及平角的定义即可得解.【详解】解(1),分别平分和,,,,;(2),,即,,是的平分线,,,又,,又在的内部,平分;(3)如图,不发生变化,,过,分别作,,则有,,,,,,,,,,,,不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ∥EF,如图:∵,∴,∴,,∵∴;(2)①;理由如下:如图,过作交于,∵,∴,∴,,∴;②当点在延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;当在之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.6.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=

5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)aⓝ=a÷a÷a…÷a=(3)原式====-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.8.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵125,343,729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵125,343,729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.9.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案为2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.10.(1)(437,307,177)是“蹦蹦数组”,(601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147.【分析】(1)由“蹦蹦数组”的定义进行验证即可;(2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解;(3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数.【详解】解:(1)数组(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦数组”;数组(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦数组”;(2)设s为,t为,则,∵m、n为整数,∴,则t为258,∴s为532,而,则b为532-137=395,验算:532-395=395-258=137,故数组为(532,395,258);(3)根据题意,设这个数为,则,∴,而和都是0到9的正整数,讨论:p12345q13579111123135147159而是7的倍数的三位数只有147,且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,故这个三位数是147.【点睛】本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.11.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)aⓝ=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.12.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2=【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x、y的取值范围进行化简即可;(4)根据A、B在数轴上的移动方向和速度可分别用代数式表示出数和,再根据(2)的解题思路即可得到结果.【详解】解:(1);(2)依题意得:,化简得:,所以或,解得:x=5或x=1;(3)由数轴可知:0<x<1,y<0,所以===(4)依题意得:数a=−1+t,b=3−t;因为,所以,化简得:,解得:t=3或t=,所以当时,的值为3或.【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.13.(1)2;(2);(3)或【分析】(1)直接利用以为底,进行求面积;(2)的面积等于的面积,需要分三种情况进行分类讨论;(3)根据推导出,然后分两种情况进行讨论,即当位于轴负半轴上时与位于轴正半轴上时.【详解】解:(1).(2)作如下图形,进行分类讨论:①当点在轴正半轴上时,,;②当点在轴负半轴上时,,;③当点在轴负半轴上时,,;因此符合条件的点坐标有3个,分别是.(3),,,即与点到的距离相等,,,,由可推出,①位于轴负半轴上时,,,,;②位于轴正半轴上时,,,综上:点的坐标为或.【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.14.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=∠BMD+∠OAD,据此即可得到结论.【详解】(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);(2)如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.16.(1);(2)①;②;(3).【分析】(1)根据定义判断即可;(2)①设直线上与点的“距点”的点的坐标为(a,3),根据定义列出关于a的方程,解方程即可;②点坐标为,直线上点的纵坐标为b,由题意得,转化为不等式组,解不等式组即可.(3)分类讨论,分别取P与点M重合、P与点N重合讨论。当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),根据定义列出关于m的绝对值方程,解方程,取较小的值;当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),根据定义列出关于m的绝对值方程,解方程,取较大的值,问题得解.【详解】解:(1)∵,O(0,0),∴,∴点D与原点互为“距点”;∵,O(0,0),∴,所以点D与原点互为“距点”;∵,O(0,0),∴,所以点D与原点互为“距点”;故答案为:;(2)①设直线上与点的“距点”的点的坐标为(a,3),则,解得a=2故答案为(2,3);②如图,点坐标为,直线上点的纵坐标为b,设直线上点的坐标为(c,b)则:,∴,∴,∴,即的取值范围是;(3)如图(1),当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),∵点P与点Q互为“5-距点",P(1,2),∴,解得:,;∵,∴取.当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),∵点P与点Q互为“5-距点",则P(3,2),∴,解得:,,∵∴取∴.【点睛】本题为新定义题型,关键要读懂题目中给出的新概念,建立模型,并结合所学知识解决即可.17.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.18.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∠DOG+∠ACE=∠OHC【分析】(1)利用非负性即可求出a,b即可得出结论;(2)先表示出OQ,OP,利用面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理∠FHO=∠DOG,即可得出结论.【详解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0),故答案为(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=OQ×|xD|=t×4=2t,S△ODP=OP×|yD|=(8-2t)×3=12-3t,∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)∴∠GOD+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°,又∵∠DOC=∠DCO,∴∠OAC=∠AOD,∵y轴平分∠GOD,∴∠GOA=∠AOD,∴∠GOA=∠OAC,∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE,同理∠FHO=∠GOD,∵OG∥FH,∴∠DOG=∠FHO,∴∠DOG+∠ACE=∠FHO+∠FHC,即∠DOG+∠ACE=∠OHC.【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.19.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)将x=-1和x=-2分别代入可得出答案;(2)将x=代入可得关于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得关于a、b、k的方程,根据无论k为何值时,都成立就可求出a、b的值.【详解】(1)由题意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由题意得:,解得:a=-4;(3)∵k无论为何值,总有f(1)=0,∴=0,则当k=1、k=0时,可得方程组,解得:.【点睛】本题考查了代数式求值、解一元一次方程、一元一次方程的解、解二元一次方程组等,读懂新定义是解题的关键.20.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:解得答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=∵a、b都是整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.21.【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m的取值范围便可.【详解】解:解方程组得:,解方程组得:,∵关于,的二元一次方程组的解是方程组的模糊解,因此有:且,化简得:,即解得:,故答案为.【点睛】本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.22.(1)−3,4,4;(2)(0,)或(0,);(3)n<−5或n>−1【分析】(1)根据非负数的性质构建方程组,求出a和b,再根据BC∥x轴,可得c的值;(2)当点D在直线AB的下方时,如图1−1中,延长BC交y轴于E(0,4),连接AE.设D(0,m).当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).分别构建方程,可得结论.(3)如图2中,当点N在点A的右侧时,连接MN,OB,设M(a,b),利用面积法求出b的值,再求出S△BNM=S△BCM时,n的值,同法求出当点N在点的左侧时,且S△BNM=S△BCM时,n的值,结合图象可得结论.【详解】解:(1)∵,又∵≥0,|2a−b+10|≥0,∴a+b−1=0且2a−b+10=0,∴a=−3,b=4,∵BC∥x轴,∴c=4,∴a=−3,b=4,c=4,故答案为:−3,4,4;(2)当点D在直线AB的下方时,如图1−1中,延长BC交y轴于E(0,4),连接AE.设D(0,m).∵S△ABD=S△AED+S△BDE−S△ABE=S△ABC,∴×(4−m)×3+×(4−m)×4−×4×4=×2×4,∴m=;当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).∵S△ABD=S△ADO+S△ODB−S△ABO=S△ABC,∴×m×3+×m×4−×3×4=×2×4,∴m=.综上所述,满足条件的点D的坐标为(0,)或(0,).(3)如图2中,当点N点A的右侧时,连接MN,OB.设M(a,b),∵S△BCM=S△OBC−(S△AOB−S△AOM),∴×2×(4−b)=×2×4−(×3×4−12×3×b),解得b=,当S△BNM=S△BCM时,则有×(n+3)×4−×(n+3)×=×2×(4−),解得n=−1,当点N在点A的左侧时,且S△BNM=S△BCM时,同法可得n=−5,观察图象可知,满足条件的n的值为n<−5或n>−1.【点睛】本题属于三角形综合题,考查了三角形的面积,非负数的性质,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用未知数构建方程解决问题,对于初一学生来说题目有一定的难度.23.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程组的解,然后代入A、B的坐标即可解答;(2)先求出OC的长,分点P在线段OB上和OB的延长线上两种情况,分别利用三角形面积公式计算即可;(3)分两种情况解答:①当点P在线段OB上时,连接PQ,过点M作PM⊥AC交AC的延长线于M,可得OP=2CQ,构建方程解答即可;②当点P在BO的延长线上时,同理可解.【详解】解:(1)解二元一次方程组,得:∴A(6,7),B(-8,0);(2)①当点P在线段OB上时,BP=4t,OP=8-4t,∴②当点P在OB延长线上时,综上所述;(3)①当点P在线段OB上时,如图:连接PQ,过点M作PM⊥AC交AC的延长线于M,又;②当在线段延长线上时同理可得:.综上,满足题意t的值为或4.【点睛】本题主要考查了三角形的面积、二元一次方程组等知识点,学会用分类讨论的思想思考问题以及利用面积法解决线段之间的关系成为解答本题的关键.24.(1),,,;(2)的取值范围为;(3)①;②【分析】(1)根据求出a、b、c的值,由此求解即可;(2)分当点在直线上位于轴左侧时和当点在直线上位于轴右侧时讨论求解即可得到答案;(3)①由由得,,由此求解即可;②易得,连接,由得,,化简得,,然后联立求解即可.【详解】解:(1)∵,∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)当点在直线上位于轴左侧时,由题意得,,解得,,当时,,结合图形可知,当时,;同理可得,当点在直线上位于轴右侧时,,当时,,,解得,,结合图形可知,当时,,∴的取值范围为;(3)①由得,,化简得,;②易得,连接,由得,,化简得,,联立方程组,解得,∴【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.25.(Ⅰ);(Ⅱ)当时,三角形的面积为;当时,三角形的面积为;(Ⅲ)或.【分析】(Ⅰ)先求出的长,再根据的长即可得;(Ⅱ)先分别求出点运动到点所需时间、点运动到点所需时间,从而可得,再分和两种情况,分别利用三角形的面积公式、梯形的面积公式即可得;(Ⅲ)根据(Ⅱ)的结论,分和两种情况,分别建立不等式,解不等式即可得.【详解】解:(Ⅰ)轴,,,轴,,;(Ⅱ)∵点运动的路径长为,所用时间为7秒;点运动的路径长为,所用时间为秒,∴根据其中一点到达终点时运动停止可知,运动时间的取值范围为,点运动到点所用时间为4秒,点运动到点所用时间为,因此,分以下两种情况:①如图,当时,,则三角形的面积为;②当时,如图,过点作,交延长线于点,,,则三角形的面积为,,,综上,当时,三角形的面积为;当时,三角形的面积为;(Ⅲ)①当时,则,解得,则此时的取值范围为;②当时,则,解得,则此时的取值范围为,综上,当三角形的面积的范围小于16时,或.【点睛】本题考查了坐标与图形、三角形的面积公式、一元一次不等式的应用等知识点,较难的是题(Ⅱ),正确分两种情况讨论是解题关键.26.(1);(2)-17【分析】(1)解方程组求出x、y的值,根据列不等式组求出答案;(2)将两个方程相加,求得6x+3y=-9,即可得到答案.【详解】解:(1)解方程组得,∵,∴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论