2024北师大版八年级数学上册《二元一次方程组的解法》每课时教学设计汇编(含两个教学设计)_第1页
2024北师大版八年级数学上册《二元一次方程组的解法》每课时教学设计汇编(含两个教学设计)_第2页
2024北师大版八年级数学上册《二元一次方程组的解法》每课时教学设计汇编(含两个教学设计)_第3页
2024北师大版八年级数学上册《二元一次方程组的解法》每课时教学设计汇编(含两个教学设计)_第4页
2024北师大版八年级数学上册《二元一次方程组的解法》每课时教学设计汇编(含两个教学设计)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章二元一次方程组

2二元一次方程组的解法(第1课时)

一、学习任务分析

二元一次方程组作为衔接一元一次方程与多元一次方程组的关键环节,既巩固了一元一次方

程的学习基础,更为后续学习一次函数、一元二次方程、不等式组,以及复杂的代数系统奠定了

坚实的基础。通过求解二元一次方程组,学生将能够初步掌握利用代数方法解决多变量的实际问

题,培养逻辑思维能力与代数运算能力,初步建立数学建模意识。二元一次方程组的解法基于消

元思想,通过将二元一次方程组转化为•元•次方程来求解。本节涵盖的消元方法有代入消元法

和加减消元法。

本节内容共安排2课时,本课为第1课时。基于学生已掌握的二元一次方程(组)基本概念,

并承接上节课“种植问题”情境,引导学生经历自主探究和合作交流的活动,感受代入消元法的

形成过程;通过问题串,引导学生整理与提炼解二元一次方程组的基本思路与步骤,习得二元一

次方程组的解法一一代入消元法。二元一次方程组的解法,其本质思想是消元,体会“化未知为

已知”的化归思想。

二、学生起点分析

学生的知识技能基础:在之前的学习中,学生能讲行有理数与整式的运算,会解一元一次方

程,对二元一次方程(组)及其解等基本概念有清晰认知。在应用迁移层面,学生经历了列一元

一次方程解应用题的建模训练,具备通过分析问题并抽象出问题中的等量关系的能力,可初步建

立二元一次方程组模型。这便于学生联想利用一元一次方程解二元一次方程组,体会将“二元”

化归为“一元”的消元思想。尤为关键的是,学生已经掌握了用单变量表示另一变量的代数变形

技能,这为代入消元法奠定了直接的操作基础。

学生的活动经验基础:学生经历r用列举法探索二元一次方程组斜的过程,已深刻感知学习

二元一次方程组一般解法的必要性,并具备主动探究与合作交流的意识。然而,由于认知水平的

限制,其归纳概括的能力较弱,解决实际问题的能力仍待提升。

三、教学目标

1.会用代入消元法解二元一次方程组,能用自己的语言归纳出用代入消元法解二元一次方程

组的一般步骤。

2.经历从二元一次方程组到一元一次方程的转化过程,理解“消元”是解二元一次方程组的

基本思想。

教学重点:会用代入消元法解二元一次方程组。

教学难点:“消元”思想的理解。

四、教学过程设计

【第一环节】问题情境,引入新知

1.活动内容

在上一节的种植问题中,要想知道小明和小颖各栽种了几株绿植,就需要解方程组

x-y=2,①

x+1=2(y-l)o②

(1)两个方程中的未知数工有什么关系?未知数y呢?

(2)未知数x与未知数y之间满足什么关系?你能用其中一个未知数表示另一个未知数吗?

(3)你能设法把这个二元一次方程组转化为一元一次方程吗?与同伴进行交流。

(4)如果将),=》一2代入方程①会出现什么结果?用这种方法解二元一次方程组有哪些

注意事项?

(5)如何保证所求方程组的解是正确的?如何检验?

分析:(1)同一个方程组中,相同未知数表示同一对象,这里的x都表示小明栽种的绿植

数量,y都表示小颖栽种的绿植数量。

(2)选择利用第①个方程进行变形,因为方程①中工的系数是1,更简单,直接通过移项就

可以得到x=y+2或y=x—2。

(3)将x=),+2代入方程②中,消去未知数x,就可以得到关于j,的一元一次方程:),+2+

1=20-1);当然也可以将>,=》-2代入方程②中,消去未知数/就可以得到关于x的一元一

次方程tx+l=2(x—2—

(4)如果将y=x—2代入方程①会出现“2=2”这样的恒等式,不能得到关于其中一个未

知数的一元一次方程,无法实现将“二元”方程转化为“一元”方程。

(5)把求出的未知数的值代入原方程组,可以检验所求得的解是否正确。

x-y=2,①

解方程组:

x+1=2(y-l)。②

解:由①,得j,=x—2。

由于方程组中相同的未知数表示同一对象,所以方程②中的y也等于x—2,可以用x—2代

替方程②中的户于是有

x+l=2(x-2-l)o④

解一元一次方程④,得x=7o

再把x=7代入③,得y=5。

(x-y=2[x=7,

这样,我们就得到二元一次方程组彳,.”f「的解<

2.活动目的

以“种植问题”这一延续性情境为切入点,基于学生上节课已建立的二元一•次方程组模型,

通过未解决的悬念自然导入新知。这一设计旨在保持情境的连贯性,激活学生已有认知,创设认

知冲突,激发探究动机,体现知识的层层递进关系,帮助学生构建完整的知识体系框架。

规范书写解二元一次方程组的完整过程,实质上就是用简单且准确的数学语言进行表达的过

程,让学生初步感受用代入消元法解决具体问题的完整流程,培养数学语言表达能力。

3.注意事项

问题(1)(2)(3)是沿用新教材中的问题,问题(4)引导学生意识到用一个未知数表示

另一个未知数后,必须代入另一个没有变形的方程;问题(5)则引导学生进一步感受方程组的

解是使得原方程组成立的未知数的值。

鉴于学生尚未形成对代入消元法的系统化认知,也可以辅以解决问题的路径图。

【第二环节】典例精析,应用新知

L活动内容

例1解方程组:

3%+2),=14,①

x=y+3o②

问:观察方程组,你会选择消去哪一个未知数来解方程组?为什么?

解:将②代入①,得:3(y+3)+2),=14,

3y+9+2y=14,

5y=5,

)'=1,

将y=1代入②,得x=4o

所以原方程组的解是[x=4,

b=i。

例2解方程组:

21+3"16,①

x+4),=13。②

问:(1)观察方程组,你会选择哪一个方程进行变形后求解?为什么?

(2)尝试利用其他方式变形求解,你有什么发现?

解法一:由②,得/=13—4A③

将③代入①,得2(13-4y)+3y=16,

26—8),+3y=16,

-5^=-IO,

尸2。

将歹=2代入③,得x=5o

所以原方程组的解是

ly=2o

6

解法二:由①,得XJ;"。③

将③代入②,得若2+”=13,

解得y=2»

将y=2代入③,得x=5o

所以原方程组的解是(”=5,

b=2o

2.活动目的

这两个例题的安排体现了先易后难的原则,例1中的方程②已经将x表示为含有y的代数

式,直接代入方程①即可消去一个未知数x,而例2则需先进行恒等变形。解方程组的过程中,

引导学生通过自主探究与合作交流尝试求解,鼓励学生分享自己的解题策略,进一步体会消元思

想的核心价值以及消元策略的优化选择过程。

3.注意事项

实际上,对于方程组中的任一方程,利用等式的性质都可以用其中一个未知数表示另一个未

知数。但为了计算方便,通常选择未知数的系数较为简单的那个方程进行变形。教学中,引导学

生先观察方程的结构特征,通过与同桌交流选择消去哪一个未知数实现“消元”,再解方程组。

【第三环节】思考交流,提炼新知

1.活动内容

思考-交流

(1)上面解方程组的基本思路是什么?主要步骤有哪些?与同伴进行交流。

上面解方程组的基本思路是“消元”一一把“二元”变为“一元”。

主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代

入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方

法称为代入消化法。

代入消元法的详细步骤如下。

(1)变形:用含一个未知数的代数式表示另一个未知数。

(选择未知数的系数较为简单的方程进行变形)

(2)代入:用新得到的这个代数式替代另一个方程中相应的未知数。

(将此代数式代入没有变形的另一个方程中,可得一个一元一次方程)

(3)求解.:解这个一元一次方程,得到其中一个未知数的值。

(4)回代:回代求出另一个未知数的值。

(5)作答:把方程组的解表示出来。

(6)检验:把求得的解代人每一个方程看是否成立,若是实际问题,还需要注意是否符合

生活实际。

2.活动目的

引导学生梳理用代入消元法解二元一次方程组的基本思路,并归纳概括出代入消元法的主要

步骤,并提醒学生注重细节、理清算理,体会知识之间的关联。

3.注意事项

明确解二元一次方程组的本质是“消元”,实现消元的途径可能不是唯一的,本课重点掌握

利用代入消元的方法将“二元”方程转化为“一元”方程。

【第四环节】学以致用,巩固新知

1.活动内容

用代入消元法解下列方程组:

⑴[产"⑵

,x+y=12;14x+3y=65;

3x-2y=9,

(3)("XL(4)|x+2y=3o

[x-^=7o

2.活动目的

通过有针对性地解二元一次方程组的训练,巩固用代入消元法解二元一次方程组的方法。学

生独立完成后,可组织“同伴互评”活动,既可以激发学生学习积极性,又能加深学生对消元思

想的认识。

【第五环节】归纳小结,完善新知

1.活动内容

(1)这节课你是怎样求解二元一次方程组的?

(2)这节课你感受到了哪些数学思想?

(3)类比解二元一次方程组的过程,你认为解多元方程组的核心方法是什么?

2.活动目的

引导学生自主总结本误核心知识要点及数学思想方法,通过结构化的梳理明晰知识结构,完

善知识体系,使学生体会用单一知识技能解题是基础,而运用数学思想贯通整个知识体系才是本

课的主要内涵所在。

【第六环节】分层作业,课后延伸

1.活动内容

基础性作业:习题5.2知识技能第I,3题。

拓展性作业:

2023年5月10U,措教天舟六号货运飞船的K征七号遥七运载火箭,在我国文昌航天发射

场点火发射成功。为了普及航空航天科普知识,某校组织学生去文昌卫星发射中心参观学习。已

知该校租用甲、乙两种不同型号的客车共15辆,租用1辆甲型客车需600元,租用1辆乙型客

车需500元,租车费共8(X)0元,问该校甲、乙两种型号客车各租多少辆?

2.活动目的

基于学生认知水平差异设计分层作业,既保留教材基础题型作为基础性作业,又增设发展性

作业,通过梯度任务更好地激活不同层次学生的学习动力,满足不同层次学生的发展需求。

五、教学设计反思

1.教学方法:紧扣教材,问题串引领

本节课在问题串引领下,引导学生发现求解二元一次方程组的方法是利用代入消元将二元一

次方程组转化为一元一次方程求解,再反代求出另一个未知数。从单一的代入消元延伸至整体代

入消元的思想,在构造知识体系的同时,体现知识的层层递进关系。在结构化设计的数学活动中,

教师着力还原知识形成过程,通过观察比较、合作交流等学习方式,促进学生深度理解消元思想,

系统掌握二元一次方程组的解法,形成良好的数学思维习惯。

2.核心素养培育

本节课在教材设计的基础上,设置了问题情境,用追问设疑的方式启发学生思考分析、交流

对比。教学中引导学生用已经获取的经验解决新的问题,借助层层递进的问题串,加强学生对解

二元一次方程组基本周路——消元思想的体会。在此思相指导下,遵循从具体到抽象、从特殊到

一般的认知规律,系统建构代入消元法。本节课不仅是解二元一次方程组方法的学习,更是对消

元思想的深度培养,让学生体会用单一知识技能解题是基础,而运用数学思想贯通整个知识体系

才是本课的主要内涵所在。

3.教学评价

对用代入消元法解二元一次方程组的评价,应侧重考察学生能否根据方程组的结构特征,

灵活选择适当的代入方法求出二元一次方程组的脩;尊重学生之间思维习惯、学习能力和学习水

平等方面的差异,根据不同学生的情况进行针对性的指导,注重对学生活动过程的评价,只要合

理都应给予鼓励和肯定,帮助学生树立学习数学的自信。同时,教师可以在小组合作中为学生提

供生生评价的平台,让学生间学会质疑、讨论和互相欣赏。

附:板书设计

5.2.1求解二元一次方程组

一一代入消元法

⑶:+2),=14,①

1.求解二元一次方程组的基本思路:例1解方程组

消元

解:将②代入①,得:3(y+3)+2y=l4

“二元方程”------A“一元方程”

2.解二元一次方程组的步骤:解得:y=\

(1)变形

将y=1代入②得:x=4

(2)代入

<3)求解••・原方程组的解是

y=1

(4)回代

(5)作答

(6)检验

一、学习任务分析

“二元一次方程组的解法”是北师大版初中数学八年级(上册)第五章“二元一次方程组”

的第2节。本节内容共安排2个课时,第I课时引导学生用个未知数表示另个未知数,将二

元一次方程组转化为一元一次方程求解,理解代入消元法,体验消元思路与化归思想。本节课为

第2课时,通过代入消元法解系数不为1的二元一次方程组,感受学习加减消元法的必要性;比

较加减消元法和代入消元法的特点,归纳解二元一次方程组的基本思路和主要步骤,积累解方程

组的经验。教材通过问题链设计揭示消元本质,引导学生体会”化未知为已知”的化归思想,在

解决问题的过程中锻炼学生的思维能力,为后续学习线性方程组及平面解析几何等知识奠定基

础。

二、学生起点分析

学生的知识技能基础:学生在七年级已学习了解一元一次方程。经过上一课时的学习,学生

会用代入消元法将二元一次方程组转化为一元一次方程求解,掌握了代入消元法解二元一次方程

组的主要步骤,并体会到解二元一次方程组的木质是“消元”。

学生的活动经验基础:学生在之前的学习中,已经经历了探索用消元法解二元一次方程组的

过程,积累了一定的解方程组经验。八年级学生已具备在数学活动中大胆发表见解、独立思考和

合作交流的经验。

三、教学目标

1.经历对二元•次方程组解法的探索,体会加减消元法的必要性。

2.能用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体会“化

未知为己知”的化归思想。

教学重点:用加减消元法解二元一次方程组。

教学难度:感受学习加减消元法的必要性,并理解其基本原理。

四、教学过程设计

【第一环节】问题情境,引入新知

1.活动内容

怎样解下面的二元一次方程组呢?

3x+5y=21,①

2x—5y=—1lo②

(1)你能用代入消元法解上面这个二元一次方程组吗?你是怎么做的?与同伴进行交流。

(2)两个方程中的未知数),的系数有什么特点?

(3)除了代入消兀法以外,你还能用其他方法把这个方程组从“二兀”化为“一兀”吗?

这样做的道理是什么?

方法1:方法2:方法3:

5v-l1

把②变形,得工=1,把②变形得5y=2x+ll,①+②,得5x=10,

2

x=2o

代入①,得—I;11)+5),=21,代入①,得3x+2x+U=21,

将五=2代入①,得6+5),=21,

x=2o

y=3。

将x=2代入①,得6+5y=21,y=3。

将y=3代入①,得3x+15=21,

y=3o

x=2c原方程组的解是

y=3o

x=2,x=2»

原方程组的解是〈c原方程组的解是〈.

y=3oy=3o

2.活动目的

通过设置问题串,引导学生回顾用代入消元法解二元一次方程组的过程,并基于方程组的系

数特征,引出对新的消元法的探究,为探索加减消元法作铺垫。在活动中,教师要引导学生关注

不同解法的异同,体会用“消元”思想解二元一次方程组方法的多样性,初步感知本题用加减消

元求解的简捷性。

3.注意事项

本题可以以问题“你想怎样解这个二元一次方程组?”引导学生自主建构解题路径,生成用

加减消元法解二元一次方程组的基本步骤,体会消元的思想。

【第二环节】典例精析,应用新知

1.活动内容

2x-5y=7,①

例1解方程组;

2九+3y=—1。②

o

解:②一①,得8),=—8,o

y=-lo

将y=-l代入①,得2x+5=7,

x=

x=1,

所以原方程组的解是4

y=-L

2x+3y=12,①

例2解方程组:

3x+4y=17o②

o

解:①X3,得6戈+9y=36。

②X2,得64十8y=34。

③-④,得y=2。

将y=2代入①,得%=3。

[x=3,

所以原方程组的解是\。

2.活动目的

例1通过将两式相减可直接消去未知数X,例2则需根据最小公倍数将两个方程中其中一个

未知数的系数均化为相同的数再进行求解。两道例题均采用加减消元法求解,设计具有层次感。

3.注意事项

教师要引导学生观察二元一次方程组中相同未知数系数的特征,利用等式的性质探索加减消

元法的主要步骤;让学生发现不同未知数系数的特征,并选择合适的未知数,把系数化为相等(或

相反)的数,在最后教师要提醒学生检验,确保正确求解。

【第三环节】思考交流,提炼新知

1.活动内容

思考-交流

上面解方程组的基本思路是什么?主要步骤有哪些?与同伴进行交流。

上面解方程组的基本思路仍然是“消元”。主要步骤是通过两式相加(或相减)消去其中一

个未知数,这种解二元一次方程组的方法称为加减消元法。

回顾•反思

回顾求解方程组的过程,你积累了哪些经验?

2.活动目的

归纳加减消元法的基本思路是“消元”,主要步骤是通过两式相加(或相减)消去其中一个

未知数。

3.注意事项

加减消元法是“消元”的技能之一,消元的思路是把“二元”变为“一元”。针对基础薄弱

的学生,把归纳加减消元法的基本步骤作为课堂重点内容;针对基础较好的学生,让学生体验代

入消元法和加减消元法的方法选择,淡化步骤,强化“消元”的思想。

你能用代人消元法求解吗?

两种解法有何共同特点?

【第四环节】学以致用,巩固新知

1.活动内容

(1)用加减消无法解下列方程组:

7x-2y=3,4s+3/=5,

9x+2y=-19;2s—t=-5c

(2)解下列方程组:

3。+2)+5(),+1)=21,厂」3(x+l)+5(),—1)=21,

①<②

2(x-3)-5(y-2)=-ll;[2(x+l)-5(>>-l)=-1L

2.活动目的

第一组练习明确提出用加减消无法解下列方程,检测学生对加减消元法的掌握情况,归纳解

二元一次方程组的两种方法的共同特点是“消元”。

第二组题干中没有对如何消元提出要求,需要学生通过观察方程组特点,把未知数变成多项

式,整理方程组或整体换元,再选择合适的方法解方程组。

3.注意事项

教师对学生要有及时的指导和点评,对有困难的学生,要及时帮扶与鼓励。

【第五环节】归纳小结,完善新知

1.活动内容

【回顾・反思】

(1)本节课解二元一次方程组的基本思路是什么?主要步骤有哪些?

(2)回顾这两节课解二元一次方程组的过程,你积累了哪些经验?

构建框架:

内容:加减消元法

二元一次方程组--------------------------------->求解

--------------------T---------思路:“二元”化为“一元”——-1-——

思想:转化与化归

____________________

2.活动目的

学生自主总结本节课的知识要点及数学思想和方法,师生相互补充。

3.注意事项

学生先主动用自己的语言归纳总结,接着小组之间相互补充提炼,然后教师在此基础上进行

补充,最终形成系统的用“消元”法解方程组的思路,强化对代入消元法和加减消元法算理的理

解。

【第六环节】分层作业,课后延伸

1.活动内容

基础性作业:

习题5.2第2,4题。

拓展性作业:

(1)习题5.2第5题。

(2)请根据习题5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论