版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省浑源县第七中学校2026届高二数学第一学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是等差数列,为数列的前项和,,,则()A.54 B.71C.81 D.802.已知集合,则()A. B.C. D.3.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.4.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.335.设、是两条不同的直线,、、是三个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则6.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.567.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.98.抛物线的准线方程为()A B.C. D.9.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣110.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.11.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个12.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.类比教材中推导球体积公式的方法,试计算椭圆T:绕y轴旋转一周后所形成的旋转体(我们称为橄榄球)的体积为________.14.如图,已知椭圆C1和双曲线C2交于P1、P2、P3、P4四个点,F1和F2分别是C1的左右焦点,也是C2的左右焦点,并且六边形是正六边形.若椭圆C1的方程为,则双曲线方程为______.15.如图,正四棱锥的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE上的动点,则MN的最小值为______16.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.18.(12分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点19.(12分)已知函数f(x)=x3﹣3ax2+2bx在x=处有极大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.20.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长21.(12分)如图,四棱锥P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,点M在线段PD上,且DM=2MP,平面(1)求证:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成锐二面角的余弦值22.(10分)如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等差数列的前n项和公式求解.【详解】∵是等差数列,,∴,得,∴.故选:C.2、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.3、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C4、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C5、B【解析】根据线线、线面、面面的位置关系,对选项进行逐一判断即可.【详解】选项A.一条直线垂直于一平面内的,两条相交直线,则改直线与平面垂直则由,不能得出,故选项A不正确.选项B.,则正确,故选项B正确.选项C若,则与可能相交,可能异面,也可能平行,故选项C不正确.选项D.若,则与可能相交,可能平行,故选项D不正确.故选:B6、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B7、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等8、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.9、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C10、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.11、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.12、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】类比球的体积公式的方法,将橄榄球细分为无数个小圆柱体叠加起来【详解】设椭圆的方程为:,则令(根据对称性,我们只需算出轴上半部分的体积)不妨设,按照平均分为等份,则每一等份都是相同高度的圆柱体,第1个圆柱体的体积的半径为:第2个圆柱体的体积的半径为:第个圆柱体的体积的半径为:则第个圆柱体的体积为:化简可得:则有:根据可得:当时,则有:故椭圆绕着轴旋转一周后的体积为:而题意中,则椭圆绕着轴旋转一周后的体积为故答案为:14、【解析】先根据椭圆的方程求得焦点坐标,然后根据为正六边形求得点的坐标,即点在双曲线上,然后解出方程即可【详解】设双曲线的方程为:根据椭圆的方程可得:又为正六边形,则点的坐标为:则点在双曲线上,可得:又解得:故答案为:15、【解析】根据题意,先建立空间直角坐标系,然后写出相关点的坐标,再写出相关的向量,然后根据点分别为直线上写出点的坐标,这样就得到,然后根据的取值范围而确定【详解】建立如图所示的空间直角坐标系,则有:,,,,,可得:设,且则有:,可得:则有:故则当且仅当时,故答案为:16、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个方向向量为,则直线的斜率;又其过点,故直线的方程为,则其一般式为;综上所述:若选择①②,则直线方程为:;若选择③,则直线方程为.【小问2详解】对圆C:,其圆心为,半径,根据(1)中所求,若选择①②,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长;若选择③,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长.综上所述,若选择①②,则;若选择③,则.18、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立;当直线的斜率存在时,设直线的方程,联立方程组求得和,得到,结合抛物线的定义和方程求得,,结合,即可求解.【小问1详解】解:设点,(其中),由圆,可得圆心坐标为,因为在圆外,所以到圆上的点的最小距离为,又由到圆上的点的最小距离等于它到轴的距离,可得,即,整理得,即曲线的方程为【小问2详解】解:当直线的斜率不存在时,可得点为抛物线的交点,点为坐标原点,点为抛物线的准线与轴的交点,显然满足是的中点;当直线的斜率存在时,设直线的方程,设,,,则,联立方程组,整理得,因为,且,则,故,由抛物线的定义知,设,可得,所以,又因为,所以,解得,所以,因为在地物线上,所以,即,所以,即是的中点19、(1)(2)【解析】(1)由于在点处有极小值,所以,从而可求出、的值;(2)由(1)可得,得在区间上单调递减,在区间上单调递增,从而可求出其值域.【小问1详解】因为函数在处有极大值,所以,①且②联立①②得:;【小问2详解】由(1)得,所以,由得;由得,所以,函数区间上单调递减,在区间上单调递增;又,所以在上的值域为.20、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为21、(1)证明见解析(2)【解析】(1)连接BD交AC于点E,连接ME,由所给条件推理出CA⊥AD,进而得CA⊥平面PAD,证得结论(2)首先以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,再利用向量法求解二面角即可【小问1详解】(1)连接BD交AC于点E,连接ME,如图所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,则BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90º,∠CAD=90º,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小问2详解】(2)如图所示:以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,则,∴,设平面PAB和平面MAC的一个法向量分别为,平面PAB和平面MAC所成锐二面角为,∴,,∴.22、(1)证明见解析(2)【解析】(1)由分别是的中点,得到,在由是圆的直径,所以,结合面面垂直的性质定理,证得面,即可证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职种子生产与经营(种子加工技术)试题及答案
- 2025年中职(新能源汽车技术)新能源汽车概论实务试题及答案
- 2025年中职商务助理(公文写作)试题及答案
- 2025年大学植物学(应用实操)试题及答案
- 2025年大学生物(微生物基础)试题及答案
- 2025年大学石油炼制生产操作(操作规范)试题及答案
- 2025年大学环境工程(环境工程施工)试题及答案
- 2025年中职无人机驾驶(植保)(植保作业操作)试题及答案
- 养老院老人请假制度
- 养老院老人生活娱乐活动组织人员职业发展规划制度
- 2026天津市津南创腾经济开发有限公司招聘8人笔试参考题库及答案解析
- 特种作业培训课件模板
- 2025年时事政治知识考试试题题库试题附答案完整版
- 高校宿舍管理员培训课件
- 河南省开封市2026届高三年级第一次质量检测历史试题卷+答案
- 员工通勤安全培训课件
- 岁末年初安全知识培训课件
- 全国秸秆综合利用重点县秸秆还田监测工作方案
- 中小企业人才流失问题及对策分析
- 2026年湖南铁路科技职业技术学院单招职业倾向性测试题库含答案
- 招标人主体责任履行指引
评论
0/150
提交评论